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Abstract

We present methods to correct for sample selection bias in the estimation
of dyadic regressions. Dyadic datasets can be seen as a pseudo panel data,
where both dimensions tend to infinity as the number of individuals grows.
We show that including fixed effects for both individuals forming a dyad
leads to asymptotically biased estimates of the structural parameters in the
first stage of the Heckman (1979) two step method. This is a consequence
of the incidental parameter problem. We reconcile and modify existing ap-
proaches to similar problems in standard panel data models to this frame-
work. Our Monte Carlo simulation exercise corroborates to the theoretical
predictions that the standard Heckman approach yields biased estimates,
while the proposed methods reduce such biases. We apply the proposed
estimators to the gravity model for international trade flows. The suggested
methods deliver different estimates for the coefficients of trade barriers.
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1 Introduction

Tinbergen (1962) established gravity equations, which have been widely used
for estimating models of international trade, migration, equity and FDI
flows. For instance, in the literature of international trade flows, it is used
to infer the effects of institutions such as customs unions, exchange rate
mechanisms, ethnic ties, linguistic identity and international boarders on
trade flows.

Even decades after its first appearance in trade models, there is still a
substantial lack of understanding on features of its estimation, and econo-
metric methods that considers some potential issues only emerged recently
in the literature. The aim of this paper is to provide an ample and deep
discussion about different estimation issues in gravity models focusing on its
dyadic structure, highlighting and describing in detail proposed estimators
that take it into account.

A great deal of applications rely on the specification of the gravity model
proposed by Helpman et al. (2008), due to its tractability and the fact that
it demonstrates explicitly how the sample selection problem plays a role in
the macroeconomic model. Up to this seminal paper, most studies only con-
sidered observations with positive trade flows when estimating such model
without imposing any special treatment on it. However, the authors point
out that one should account for the self-selection of firms into export mar-
kets and their impact on trade volumes. In other words, one should account
for sample selection in the estimation. To do so, the authors first relax some
assumptions in the theoretical foundation of the gravity model proposed by
Anderson and Van Wincoop (2003), then they propose a parametric esti-
mation of a linear model controlling for the sample selection through the
inverse Mills-Ratio approach (Heckman (1979)).

However, we show that this methodology suffers from the incidental
parameter problem, Neyman and Scott (1948). This well-known problem
relates to the fact that, as demonstrated by Fernández-Val and Weidner
(2016), the fixed effects estimates in nonlinear models are asymptotically
biased, even when both dimensions of a panel dataset tend to infinity. The
model proposed by Helpman et al. (2008) undergoes such issue, once it ac-
counts for fixed effects for both importer and exporter, which are known in
the literature as the multilateral resistance terms.

In order to analyze such problems, and discuss possible solutions to it,
we further simplify the estimated equations by Helpman et al. (2008). This
simplification highlights the fact that such a framework is applicable to any
dyadic data. As defined by Graham (2020), dyadic data reflects situations
where the outcome of interest is determined by pairwise interactions be-
tween units. More specifically, the first stage of the estimation - that relies
on estimating the probabilities that two units (nodes) interact with each
other (that countries trade in the trade application) - delineates a specifi-
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cation for network formation. One particularity of dyadic settings is that
as the number of individuals increase, both dimensions of the pseudo panel
increase.

The introduction of two-way fixed effects requires that in the first stage
of the approach, a more involved estimator needs to be employed to differ-
ence out such fixed effects, delivering asymptotically unbiased and consistent
estimates for the structural parameters. A clever approach is proposed by
Charbonneau (2017) and employed in this study. This approach is based on
a conditional likelihood estimator.

Once such estimates are obtained, the standard Heckman approach for
correcting for sample selection in the observation equation requires that (i)
estimates of the fixed effects itself in the first stage (selection equation) are
provided such that the predicted probabilities are obtained; and (ii) a func-
tional form for the inverse Mills-ratio is provided, which generally follows
from both errors being normally distributed. The Charbonneau (2017) es-
timation results in additional problems related to both items: it does not
deliver estimates for the fixed effects itself, and it relies on the assumption
that the errors of the selection equation are logistically distributed.

We propose two different approaches to tackle such obstacles. The first
is to retrive the estimates of the fixed effects through the traditional un-
constrained MLE, by setting the structural parameters to be equal to the
estimates provided by Charbonneau (2017). This method is denoted by
the hybrid approach by Wooldridge et al. (2018). Once the fixed effects
estimates are obtained, one can then calculate the predicted probabilities.
Moreover, a transformation of the variables proposed by Lee (1983) guar-
antees that the traditional two-step approach given by Heckman (1979) can
be employed, even if the error term of the selection equation is logistically
distributed.

A second approach is developed by Kyriazidou (1997). It relies on a
weighted least squares estimator based on the idea of differencing out the
sample selection effects in the observation equation (the second stage equa-
tion of Heckman (1979)), and, in the trade application, in the estimates for
the volumes traded amongst countries. The advantage of this method is that,
as we will demonstrate later, it does not require estimates of the fixed ef-
fects in the first stage equation. While the original framework in Kyriazidou
(1997) is a standard panel data model, where equations are differenced over
the time dimension, we propose modifications of this approach to accomo-
date dyadic interactions, where equations are differenced over combinations
of dyads. Such modification delivers an approach that can be employed even
when the exogenous variables of the observation equation are invariant over
time, varying only over dyads.

Even though the proposed approaches already exist in the literature
separately (apart from our modification to the estimator proposed by Kyr-
iazidou (1997)), this study adds to the literature in that it combines those
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separate methods to account for sample selection in dyadic structures. Up
to our knowledge, although the literature for sample selection corrections
is abundant for standard panel data models, it is insufficient for dyadic
datasets, and consequently for cases related to network formation.

The structure of this paper is as follows: Section 2 presents the baseline
gravity model by Helpman et al. (2008), Section 3 presents the estimation
strategy employed by the authors, Section 4 delineates our simplification
of the model, highlighting its dyadic structure and its aspects related to
network formation, Section 5 provides the standard two-stage Heckman ap-
proach for this model, Section 6 refers to a more formalized discussion of the
incidental parameters problem, Section 7 discusses the approach by Char-
bonneau (2017), Section 8 shows our first proposed approach to correct for
sample selectivity in the observation equation, Section 9 shows the second
proposed approach, Section 10 provides our Monte Carlo simulations results
for the standard Heckman approach and the two new methods proposed
for a set of different designs, Section 11 provides an application to the es-
timation of the gravity model for international trade flows, and Section 12
concludes.

2 The gravity model by Helpman et al. (2008)

One of the baseline models for the gravity equation is the model derived
by Anderson and Van Wincoop (2003), as this was one of the first studies
to apply the theory of the gravity equations seriously to international trade
flows. Specifically, the way the constant elasticity of substitution (CES)
expenditure system is manipulated in the model allows for considering mul-
tilateral resistance terms for both countries involved in the trade flow in a
tractable way. As Anderson and Van Wincoop (2003) explains, these terms
are defined as a country’s average trade barrier with all its trading partners,
being invariant to the country. It is expected that in a pairwise trading re-
lationship the multilateral resistance terms of both involved countries affect
the outcome. This follows from, after controlling for the size of the economy
of the countries, the more resistant a country is to trade with all other trad-
ing partners, the more the country is likely to trade with a given bilateral
partner. Thus, bilateral trade is related to size, bilateral trade barriers and
the multilateral resistance terms of both countries.

However, in this study, we use as a baseline the model specified by Help-
man et al. (2008). Both models take into account the equation for trade flows
for a country i that exports a positive quantity for a given country j. There-
fore, observations related to pairs of countries that do not trade amongst
themselves are not taken into account in the estimation of the equation for
trade flows, which generates a sample selection problem. One advantage of
the paper by Helpman et al. (2008) is that it provides a sound theoretical
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framework that takes into account sample selection and also accommodates
asymmetric trade flows whereas the model by Anderson and Van Wincoop
(2003) does not.

The sample selection is accounted for by considering that it is likely that
only a fraction of firms in a country i decides to export to country j (such
fraction is allowed to be zero), and that those firms have individual hetero-
geneous productivity and face both variable and fixed costs of exportation.
Therefore, the model is able to predict one of the stylized features of the
data, which is that a number of pair of countries displays zero trade flows.
Also, it allows for the decomposition of the impact of trade frictions into
intensive and extensive margins (the first refers to the trade volume per
exporter and the latter to the number of exporters).

We consider that a country i has a measure Ni of heterogeneous firms
that differ in terms of productivity, which is measured by 1

a , where a follows
a cumulative distribution function, G(a), with support [aL, aH ]. In this
model only the more productive firms decide to export, and the fraction of
firms exporting is given by a zero-profit condition - this profitability varies
by destination, according to the demand levels of the importing countries,
the variable and the fixed costs.

It is further assumed that a firm in country i produces one unit of output
with inputs that cost cia, where a is defined as above and measures the
number of bundles of inputs used for production of a unit of output, and ci
measures the cost of the bundle (which is country-specific). If a producer
sells its product in country j, then it faces additional costs. Those costs
are split into a fixed cost, cifij , and a variable cost that takes the form of a
”melting iceberg” specification 1, assuming that τij units of a product needs
to be shipped from country i to j for a unit to arrive. 2

By also assuming CES preferences, that products are differentiated ac-
cording to their country of origin, and that there is monopolistic competition
in the final products, the model delivers the following system of equations:

(1− α)

(
τijciaij
αPj

)1−σ
Yj = cifij (1)

This Equation (1) comes from the above mentioned zero-profit condition,
where aij is defined such that at this point profits are exactly zero. We
denote by Pj the price index of the economy of country j, and Yj the size of
its economy. This equation determines the fraction of country i’s Ni firms
that export to country j, given by G(aij). The fraction of firms exporting
can be zero once aij ≤ aL. Note that here we denote that σ = 1/(1− α) is

1Which, as defined by Krugman (1991), is modeled according to the fact that for each
unit of goods shipped from one region to the other, only a fraction of it arrives.

2Note that those additional costs are country-specific but not firm-specific, nor depend-
ing on the firm productivity level.
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the elasticity of substitution across products, that remains the same across
countries (as in Anderson (1979)).

Vij =

{ ∫ aij
aL

a1−σdG(a) for aij ≥ aL
0 otherwise

(2)

Where Vij determines the bilateral trade volume.

Y1,ij =

(
ciτij
αPj

)1−σ
YjNiVij (3)

Equation (3) defines the value of country j’s imports from i (Y1,ij). It
can thus be defined as the gravity equation obtained from this model. One
can note that when aij ≤ aL, Vij will be equal to zero, and so will Y1,ij .
Moreover, from Equation (3) it is clear how the fraction of firms exporting
plays a role in the trade flows defined by Y1,ij .

P 1−σ
j =

I∑
i=1

(ciτij
α

)1−σ
NiVij (4)

Finally, this Equation (4) defines the price indices of country j. One can
note from these equations that not only trade flows can be explained, but
also asymmetries can be explained, as Y1,ij can be different from Y1,ji.

The derivations of this model can be found in the Appendix A.1. It is also
shown that this model can be used to derive the model given by Anderson
and Van Wincoop (2003) (which does not account for sample selection and
asymmetric trade flows) under the assumptions of symmetric variable costs
(τij = τji) and that Vij can be decomposed into a deterministic function
of terms that depend only on the importer, the exporter, and country-pair
characteristics. For more details, I provide the equivalence between both
models also in Appendix A.1.

3 Estimation method of Helpman et al. (2008)

Given the theoretical gravity model defined in the previous section, we now
focus on the assumptions imposed by Helpman et al. (2008) on some vari-
ables in order to further pin down the model to be estimated.

The aim of the paper by Helpman et al. (2008) is to estimate Equation
(3), the gravity equation, subject to countries that self-select into trading
(i.e., the trading decision that introduces a sample selection). The estimated
model is then used to understand the magnitude and to make inference on
the coefficients of trade barriers.

First, the authors assume, as mentioned before:
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Assumption 1. The firm productivity 1/a is Pareto distributed, with sup-
port [aL, aH ]. We assume then that the distribution function of a follows
G(a) = (ak − akL)/(akH − akL), with k > (σ − 1).

This framework allows for asymmetric trade flows Y1,ij 6= Y1,ji, once we
can have that aij < aL for some pairs ij, while aji > aL, leading to zero
exports from i to j, but not the other way round. Therefore, if the pro-
ductivity is drawn from a truncated Pareto distribution, asymmetric trade
frictions are not necessary to generate asymmetric trade flows.

Assumption 1 implies that Vij can be expressed as a function of a new
variable Wij defined below. Moreover, both variables are monotonic func-
tions of the proportion of exporters from i to j, G(aij), once all parameters
in those equations are fixed, with only aij varying:

Vij =
kak−σ+1

L

(k − σ + 1)(akH − akL)
Wij

Wij = max
((aij

aL

)k−σ+1
− 1, 0

)
From now on, we will allow the model to be extended to several periods

t = 1, ...T , since trade datasets are available for several periods. Two ad-
ditional assumptions are imposed on the structure of the variable and fixed
trade costs, where the first affects the volume of firm-level exports and the
second the decision to trade:

Assumption 2. There are i.i.d. unmeasured country-pair specific trade fric-
tions uij,t ∼ N(0, σ2

u). These affect the variable trade costs τij,t, since this
variable takes the form:

τσ−1
ij,t ≡ D

γ
ij,te

−uij,t

where Dij,t is the symmetric distance between i and j.

Assumption 3. There are i.i.d. unmeasured country-pair specific trade fic-
tions νij,t ∼ N(0, σ2

ν) that may be correlated with uij,t. These affect only
the fixed export costs fij,t, given by:

fij,t ≡ exp (φEX,i + φIM,j + κφij,t − νij,t)

where φIM,j is a fixed trade barrier imposed by the importing country on all
exporters, φEX,i is a measure of fixed export costs common across all export
destinations, and φij,t is an observed measure of any additional country-pair
specific fixed trade costs.
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Given Assumption 2, and by log-linearizing Equation (3), which defines
the export volume from country i to j, the authors arrive at the following
equation to be estimated:

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + wij,t + uij,t, (5)

where: (i) y1,ij,t = lnY1,ij,t; (ii) wij,t = lnWij,t; (iii) β1 is a vector that col-
lects the coefficients of the remaining structural parameters, β1 = (β0, γ

′
1)′;

(iv) x1,ij,t is a vector that collects 1 and the vector dij,t = lnDij,t; (v)
χj = (σ− 1) lnPj + lnYj , which is an importer fixed effects; and finally, (vi)
ϑi = −(σ − 1) ln ci + lnNi, which is an exporter fixed effects.

One of the most important differences to the equation derived in previous
studies, for instance, in the model of Anderson and Van Wincoop (2003), is
the new variable wij,t, which controls for the fraction of firms exporting. If
such term is not included in the RHS, the coefficients on any potential trade
barrier can no longer be interpreted as the elasticity of a firm’s trade with
respect to distance, once trade barriers affect both y1,ij,t and wij,t (through
the proportion of exporters from i to j), leading to an omitted variable bias,
as the latter is also correlated with y1,ij,t.

Another bias in the estimation of (5) arises when country pairs of zero
trade flows are excluded, yielding a sample selection bias. From a macroeco-
nomic modelling perspective, such bias is due to the fact that country pairs
with large observed trade barriers (high dij,t) that trade with each other are
likely to have low unobserved trade barriers (high uij,t), otherwise it would
not be profitable to trade.

Therefore, another important difference in comparison to previous stud-
ies, is that such selection bias is taken into account. To do so, a latent
variable Y ∗2,ij,t is defined, which is given by the ratio of variable export prof-
its for the most productive firm (with productivity 1/aL) to the fixed export
costs for exports from i to j (expressions that are given by the zero profit
condition). Then, in this case, positive exports are observed if Y ∗2,ij,t > 1,
and one can verify in the Appendix A.1 the expressions for Y ∗2,ij,t and that
Wij,t is a monotonic function of Y ∗2,ij,t: in the case of positive exports,

Wij,t = Y ∗2,ij,t
(k−σ+1)/(σ−1) − 1.

By log-linearizing the equation for the latent variable Y ∗2,ij,t, and given
Assumption 3, we have that:

y∗2,ij,t = x′2,ij,tβ2 + ξi + ζj + ηij,t, (6)

where: (i) ηij,t ≡ uij,t + νij,t ∼ N(0, σ2
u + σ2

ν) is i.i.d., but correlated with
the error term uij,t in Equation (5); (ii) ξi = −σ ln ci + φEX,i is an exporter
fixed effect; (iii) ζj = (σ− 1) lnPj + lnYj −φIM,j is an importer fixed effect;
(iv) β2 is a vector that collects the coefficients of the remaining structural
parameters, β2 = (γ0, γ

′
2)′; (iv) x2,ij,t is a vector that collects 1, and the

vectors dij,t = lnDij,t, and φij,t. Note that x2,ij,t includes both the regressors
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in x1,ij,t and additional regressors that affect only the decision to export, but
not the volume of exports (satisfying then an exclusion restriction).

From an econometric perspective, the fact that uij,t and ηij,t are corre-
lated indicates that the data on x1,ij,t is not randomly missing, which points
out to a sample selection problem. The Appendix A.2 demonstrates how
the bias in the estimators of Equation (5) arises in the form of an omitted
variable bias when this sample selection is not accounted for. The intuition
for the existence of this bias is that the estimates for the effects of the trade
barriers based on the sample of countries that do trade amongst themselves
do not deliver a reliable estimate of these effects for countries that do not
trade, had they traded. More specifically, the fitted regressions confound the
behavior of such parameters for the volume of trade with the parameters of
the equation determining the probability of two countries trading.

In order to estimate the coefficients on trade barriers in Equation (5) in
an unbiased manner, Helpman et al. (2008) follow the procedure proposed
by Heckman (1979). The first step of such procedure is to obtain estimates
of the selection equation, given in this case by Equation (6).

Although y∗2,ij,t is unobserved, we observe whether countries decide or not
to trade, and we know that Y ∗2,ij,t > 1 and, therefore, ln(Y ∗2,ij,t) = y∗2,ij,t > 0
when i exports to j (setting an indicator variable y2,ij,t = 1), and y∗2,ij,t ≤ 0
when it does not (setting an indicator variable y2,ij,t = 0). Thus, Equation
(6) can be estimated as a discrete choice model, such as a probit model,
given that the errors are normally distributed.

Finally, as we do not want to impose that σ2
η = σ2

u + σ2
ν = 1, we can

divide the equation above by the standard deviation ση, yielding:

y∗∗2,ij,t = x′2,ij,tβ
∗
2 + ξ∗i + ζ∗j + η∗ij,t (7)

Therefore, given Assumption 3 and Equation (7), the authors start by
specifying the Probit equation:

µij,t = Pr (y2,ij,t = 1| observed variables ) = Φ
(
x′2,ij,tβ

∗
2 + ξ∗i + ζ∗j

)
, (8)

where Φ(·) is the cdf of the standard normal distribution. This probit equa-
tion not only allows for an estimate of the inverse Mills-ratio, used for taking
into account the sample selection in the Equation (5), but also allows for
obtaining a consistent estimate of E[wij |·, y2,ij,t = 1] 3, which is then incor-
porated in the estimation of Equation (5). Note that, we use an estimate
for the variable conditional on the population of countries that do trade
amongst themselves, as this is the sample considered in the estimation of
Equation (5).

3It is noteworthy that the distributional assumptions on joint normality of the unob-
served trade costs and the Pareto distribution of firm-level productivity affect the func-
tional form of the trade flow equation via the functional form of the controls for firm
heterogeneity (wij,t) and the sample selection.
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In the following sections a more simplified model will be defined, together
with a more detailed explanation of the standard Heckman procedure for
correcting for sample selection. We will then motivate why this procedure
may not yield unbiased coefficients for the observation equation (the gravity
equation) and the correct inference due to the incidental parameters problem
(Neyman and Scott (1948)).

4 A simplified model of dyadic interactions

Taking the model proposed by Helpman et al. (2008) as a motivation, and
simplifying it for now, focusing on a specification considering two-way fixed
effects and a possible selection bias, we study the following model throughout
the next sections:

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + uij,t (9)

y2,ij,t = 1(y∗∗2,ij,t > 0) (10)

y∗∗2,ij,t = x′2,ij,tβ
∗
2 + ξ∗i + ζ∗j + η∗ij,t, (11)

(i = 1, ...N ; j = 1, ...N, t = 1, ...T, i 6= j)

where y1,ij,t is observed only when y2,ij,t = 1. However, all explanatory
variables are assumed to be observed in all periods for all i and j, being
a typical case of a censored panel. Moreover, β1 ∈ Rk is a vector that
collects the coefficients of the structural parameters, including a coefficient
of an intercept (β0), and of the explanatory variables; x1,ij,t is a vector that
collects 1 and the vector of the explanatory variables; and χj and ϑi are
fixed effects. Similarly, β∗2 ∈ Rq is a vector that collects the coefficients of
the structural parameters, including the coefficient of an intercept (β∗0), and
of the explanatory variables; x2,ij,t is a vector that collects 1 and the column
vectors of the explanatory variables; and ξ∗i and ζ∗j are fixed effects. In both
equations, the unobservable individual-specific effects may depend on the
observable explanatory variables in an arbitrary way, and are, therefore,
considered as nuisance parameters to be estimated. Moreover, the errors of
the equations might be correlated.

Note that also in this generalized framework we can have directed links
and directed outcomes, meaning that y2,ij,t does not necessarily have the
same value of y2,ji,t and vice versa. The same holds for y1,ij,t and y1,ji,t.

This model is simplified compared to the estimated equations of Help-
man et al. (2008) because it does not take into account the variable wij .
This variable, in the setting of international trade, refers to the fraction of
exporting firms in a country. It is obtained from the estimation of the single
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index in the inverse Mills-ratio, and it introduces a further non-linearity in
the model, which requires the observation equation to be estimated through
NLS.

Note that this is a so-called type 2 tobit model, in which the sample
selectivity (in the case of correlated errors) introduces non-linearity in the
equation of interest with respect to the unobserved characteristics. More-
over, such fixed effects in Equation (11), unlike in linear models, cannot be
easily differenced away.

In order to estimate such a model by MLE, one would need not only to
specify the distribution of underlying time-varing errors, but also to specify
a functional form for how the fixed effects depend on observed variables.
Besides being non-robust to distributional misspecification, this fully para-
metric ”random effects” approach involves multiple numerical integrations,
becoming computationally intensive.

Even though the motivation for this model comes from the trade lit-
erature, this specification is general enough to cover any possible case of
dyadic data. As defined by Graham (2020), dyadic data reflects situations
where the outcome of interest is determined by pairwise interactions be-
tween units. Other fields where such data is analysed includes international
financial flows, development economics and anthropology. Moreover, the se-
lection model given by Equations (10) and (11) is a typical model of network
formation, where links between units are formed or not. In this model, we
consider a directed network - where, as expected, the direction of the links
and the resulting outcome matters, while an unit i may form a link with an
j, the opposite may not be true. In this setting, the link formation given
by the variable y2,ij,t determines the observation of an outcome, given by
the variable y1,ij,t. More specifically, our framework is very similar to that
of a network formation under dyadic interaction with degree heterogeneity
(captured by the fixed effects) 4, a framework embedded in the so called
β-models in the network literature.

5 The Heckman 2-stage approach for sample se-
lection

In this section we will present the standard approach presented by Heckman
(1979) to correct for the sample selection bias in this analysed model. It
is important to mention beforehand that such bias arises from a possible
correlation between the errors uij,t and η∗ij,t. We start with some standard
assumptions:

4Degree heterogeneity is defined, in the networks literature, as the fact that the number
of links (degree) across nodes (units) varies.
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Assumption 4. The errors uij,t and η∗ij,t satisfy:

E[uij,t] = 0

E[η∗ij,t] = 0

E[uij,tui′j′,t′ ] =

{
σ2
u if i = i′, j = j′, t = t′

0 otherwise

E[η∗ij,tη
∗
ij,t] =

{
σ2
η∗ = 1 if i = i′, j = j′, t = t′

0 otherwise

E[uij,tη
∗
ij,t] =

{
σuη∗ if i = i′, j = j′, t = t′

0 otherwise

If we seek to estimate Equation (9), we need to take into account that the
estimation will only consider a selected sample, which is given by Equations
(10) and (11). We also assume, without loss of generality, that we observe
y1,ij,t for the first Ni observations related to the index i and the first Nj

observations related to the index j. Moreover, all the links between the
observations Ni of i are formed with all observations Nj of j and vice-versa,
and therefore, ultimatelly Ni = Nj . Thus, conditioning on observing the
outcomes of y1,ij,t only for the pairs that form links, we can rewrite Equation
(9) as:

E[y1,ij,t|x1,ij,t, ϑi, χj , y2,ij,t = 1] (12)

= x′1,ij,tβ1 + ϑi + χj +E[uij,t|η∗ij,t ≥ x′2,ij,t − β∗2 − ξ∗i − ζ∗j ]

If we had that uij,t is independent of η∗ij,t, and therefore, the conditional
expectation of uij,t is zero, the regression function for the selected subsample
would be the same as the populational regression function. However, in
the general case given by Assumption 4, we have that there is correlation
between these errors. Then, the conditional mean of the error η∗ij,t in the
incomplete sample is a function of the explanatory variables x2,ij,t and the
fixed effects ξ∗i and ζ∗j . Therefore, the sample selection bias arises because
this last term is not taken into account.

More generally, we can denote the single index:

zij,t =
−x′2,ij,tβ∗2 − ξ∗i − ζ∗j

σ2
η∗

= −x′2,ij,tβ∗2 − ξ∗i − ζ∗j .

We can also assume that the conditional expectation in the last term of
Equation (12) is an unknown, smooth function ϕij,t of the scalar index zij,t
and other distributional parameters in the parametric case, or a function
only of the scalar index in a nonparametric case. Therefore, we can write:

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + ϕij,t(zij,t) + νij,t, (13)
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where, by construction, E[νij,t|x1,ij,t, ϑi, χj , ϕij,t(zij,t), y
∗∗
2,ij,t > 0] = 0.

For the identification of the regression coefficients of (9), we need that
either the function ϕij,t, which ultimately is a function of the regressors
in (11), is specified, otherwise, we need strong exclusion restrictions. As
pointed out by Ahn and Powell (1993), for example, taking any nontrivial
linear combination x′1,ij,tα of the regressors x1,ij,t, then Equation (13) can
be rewritten:

y1,ij,t = x′1,ij,t(β1 + α) + ϑi + χj + [ϕij,t(zij,t)− x′1,ij,tα] + νij,t (14)

= x′1,ij,tβ
∗
1 + ϑi + χj + ϕ∗ij,t(zij,t) + ν∗ij,t

where: ϕ∗ij,t(zij,t) = ϕij,t(zij,t)−E[x′1,ij,tα|zij,t, y∗∗2,ij,t > 0]; and ν∗ij,t = νij,t −
x′1,ij,tα+E[α′x1,ij,t|zij,t, y∗∗2,ij,t > 0].

Therefore, we have that this model still satisfies that E[νij,t|x1,ij,t, ϑi, χj ,
ϕij,t(zij,t), y

∗∗
2,ij,t > 0] = 0, but β∗1 is not distinguishable from β1 without

further restrictions on the functional form of ϕij,t(·). This can be done
either through additional variables that satisfies exclusion restrictions from
the equation of interest (meaning that they affect the link formation, and
thus, are included in the regressors x2,ij,t, but they are not included in
the regressors x1,ij,t and are uncorrelated with the errors of equation 9), or
through specifying a functional form of ϕij,t(·).

To introduce a functional form for ϕij,t(·), additional distributional as-
sumptions are made:

Assumption 5. The error term uij,t is identically and independently dis-
tributed over ij and t, such that uij,t ∼ N(0, σ2

u).

Assumption 6. The error term η∗ij,t is identically and independently dis-
tributed over ij and t, such that η∗ij,t ∼ N(0, 1).

Assumption 7. The errors uij,t and η∗ij,t are correlated such that:

E[uij,tη
∗
i′j′,t′ ] =

{
σuη∗ if i = i′, j = j′, t = t′

0 otherwise

Under these assumptions, and supposing that B(uij,t, η
∗
ij,t; ρ) is the joint

bivariate normal density of uij,t and η∗ij,t, with correlation coefficient ρ =
σuη∗
σuση∗

, we then have from standard results of the bivariate normal distribu-

tion that:

E[uij,t|η∗ij,t ≥ −x′2,ij,tβ∗2 − ξ∗i − ζ∗j ] =
σuη∗

ση∗
λij,t(zij,t) = σuη∗λij,t(zij,t) (15)

where:

λij,t(zij,t) =
φ(zij,t)

1− Φ(zij,t)
=

φ(zij,t)

Φ(−zij,t)
(16)
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where φ is the density function for a standard normal variable and Φ is its
distribution function. Note that λij,t(zij,t) is the inverse Mills-ratio, which is
a monotone decreasing function of the probability of observing y1,i,j,t. Some
of its properties are: limΦ(−zij,t)−→1 λij,t = 0, limΦ(−zij,t)−→0 λij,t = ∞, and
∂λij,t/∂Φ(−zij,t) < 0.

At this point, it is interesting to note that under the distributional As-
sumptions 5 - 7, the previously given function ϕij,t(zij,t) takes the form
ϕij,t(zij,t) = σuη∗λij,t(zij,t). Thus, in general, we will obtain inconsistent
coefficient estimates for the observation equation if there is misspecification
of the parametric form of the index function and of errors.

We can rewrite Equation (13) as:

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + σuη∗λij,t(zij,t) + νij,t (17)

Therefore, if one knew zij,t, one could enter λij,t(zij,t) as a regressor
in Equation (13) and estimate it by OLS (note that, in our specification,
the two-way fixed effects could be estimated by the inclusion of dummy
variables). In that case, the least squares estimators of β1 and σuη∗ are
unbiased but inefficient, due to the heteroskedasticity in E[ν2

ij,t], as shown
in Heckman (1979):

E[ν2
ij,t] = σ2

u

(
(1− ρ2) + ρ2(1 + zij,tλij,t − λ2

ij,t)
)

As 0 ≤ 1 + zij,tλij,t − λ2
ij,t ≤ 1, the usual estimator of the covariances is

downward biased. The standard GLS procedure could be employed to obtain
appropriate standard errors for estimated coefficients of the first equation.

In practice, as we do not know zij,t, Heckman (1979) suggests the fol-
lowing procedure:

• Step 1: Estimate the probability that y∗∗2,ij,t ≥ 0 using probit analysis
on the sample, given by Equations (10) and (11).

• Step 2: From this estimator (provided that it is consistent), one can
obtain ẑij,t consistently.

• Step 3: The estimated value of λij,t(zij,t) is used as a regressor in
Equation (17) fit on the subsample. The regression estimators are
then consistent for β1 and σuη∗ .

• Step 4: One can then consistently estimate σ2
u from the following.

From step (3), we consistently estimate σuη∗ , through the estimator
σ̂uη∗ . Denote the residuals for each observation from step 3 as ν̂ij,t.

Then, using ẑij,t and λ̂ij,t the estimated values from step (2), an esti-
mator of σ2

u is:

σ̂2
u =

∑Ni
i=1

∑
j 6=i
∑T

t=1 ν̂
2
ij,t

Ni(Ni − 1)T
− σ̂uη∗

Ni(Ni − 1)T

Ni∑
i=1

∑
j 6=i

T∑
t=1

(λ̂ij,tẑij,t − λ̂2
ij,t)
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Finally, to obtain the limiting distribution of the estimates of β1 to
conduct inference, Heckman (1979) proposes to first look at Equation (17)
with an estimated value of λij,t used in place of its true value.

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + σuη∗ λ̂ij,t + σuη∗(λij,t − λ̂ij,t) + νij,t (18)

We can interpretate σuη∗(λij,t − λ̂ij,t) + νij,t as the error term of this
equation. From this, the following theorem arises:

Theorem 1. The estimator of β1 will be an asymptotically unbiased esti-
mator, i.e., will converge to a limiting distribution centered around its true
value only if E[(λij,t − λ̂ij,t)] = 0.

Proof. From standard properties of OLS/FGLS estimators, we have that
one of the conditions for β̂1 to be asymptotically unbiased 5 is that:

E[σuη∗(λij,t − λ̂ij,t) + νij,t|x1,ij,t, ϑi, χj ] = 0

By linearity of expectations, this translates to:

σuη∗E[(λij,t − λ̂ij,t)|x1,ij,t, ϑi, χj ] + σuη∗E[νij,t|x1,ij,t, ϑi, χj ] = 0

We know that by construction, the last term of this expression equals to
zero. Moreover, in the case where sample selection is present, we have that
σuη∗ > 0. Therefore, the condition simplies to:

E[(λij,t − λ̂ij,t)|x1,ij,t, ϑi, χj ] = 0

If this condition holds, we have by the Law of Iterated Expectations
that:

E[(λij,t − λ̂ij,t)] = E[E[(λij,t − λ̂ij,t)|x1,ij,t, ϑi, χj ]] = 0

The limiting distribution of the standard Heckman estimator for a simple
linear regression without fixed effects can be found in Helpman et al. (2008).

In the next section, I discuss that in our framework, the incidental pa-
rameters problem will imply a the condition of Theorem 1 is not satisfied.

5Here, we use the formal definition of an asymptotically unbiased estimator θ̂n for a
parameter θ to be:

rn(θ̂n − θ)
d−→ H (19)

Where rn is some sequence and where the expected value of H is 0
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6 The incidental parameter problem

Even though Helpman et al. (2008) directly estimated Equation (8) by max-
imum likelihood, it is well known in the literature that the fixed effects
estimators for nonlinear panel data models suffers from the incidental pa-
rameter problem (Neyman and Scott (1948)), yielding asymptotically biased
estimates of the parameters.

As highlighted by Arellano and Hahn (2007) in a standard panel data
regression with one way fixed effects and dimensions i = 1, ...N and t =
1, ...T , if T is fixed and N −→ ∞, there will be an estimation error in the
estimates of the fixed effects, as only a finite number T of observations are
available to estimate each fixed effect. As we allow for the fixed effects
to be correlated with the exogenous regressors (and its distribution is left
unspecified), this estimation error contaminates the estimates of the other
parameters as well, as they are not informationally orthogonal. For large
enough T , this bias should be small. However, even under T −→ ∞ and
N −→ ∞, the fixed effects estimator will be asymptotically biased, leading
to incorrect inference over the parameters and the average partial effects.

The same argument holds for our framework of a dyadic regression with
two-way fixed effects. In our panel data model, we have 3 dimensions: i =
1, ..N , j = 1, ...N and t = 1, ...T . Thus, the first two dimensions grow at rate
N , and the latter at rate T . As most of the available datasets in the trade
literature have the dimension T fixed, we will consider asymptotic results
such that N −→∞ and T is fixed.

Note as well that for each new country in the dataset, the number of
observations is increased by 2(N − 1)T . Moreover, for each fixed effect in
Equation (11) there are (N−1)T observations available for their estimation.

We will now use results shown by Fernández-Val and Weidner (2016) to
demonstrate how the incidental parameter problem arises in our framework,
delivering consistent but asymptotic biased estimators, keeping in mind that
as N −→ ∞ both dimensions i and j go to infinity and also the number of
observations N(N − 1)T go to infinity.

Given the dataset of N(N − 1)T observations {(y2,ij,t, x
′
2,ij,t)

′ : 1 ≤ i ≤
N, 1 ≤ j ≤ N, 1 ≤ t ≤ T, i 6= j} with y2,ij,t = 1(y∗∗2,ij,t > 0), and y∗∗2,ij,t
specified by Equation (11) where η∗ij,t is i.i.d., we have that y2,ij,t is generated
by the process:

y2,ij,t|x2,ij,t, ξ
∗, ζ∗, β∗2 ∼ fY2(·|x2,ij,t, ξ

∗, ζ∗, β∗2)

where: ξ∗ = (ξ∗1 , ...ξ
∗
N ), ζ∗ = (ζ∗1 , ...ζ

∗
N ), fY2 is a known probability function

and ξ∗i , ζ
∗
j are the unobserved fixed effects. Note here that this approach is

semi-parametric in the sense that is does not specify the distribution of the
fixed effects or their relationship with the explanatory variables.

We can further model the conditional distribution of y2,ij,t using a single-
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index specification with fixed effects, since it is a binary response model:

fY2(y2,ij,t|x2,ij,t, ξ
∗, ζ∗, β∗2) = F (x′2,ij,tβ

∗
2 + ξ∗i + ζ∗j )y2,ij,t

× [1− F (x′2,ij,tβ
∗
2 + ξ∗i + ζ∗j )]1−y2,ij,t , (20)

where, clearly y2,ij,t ∈ {0, 1} and F is a cumulative distribution function,
defined to be a standard normal according to Assumption 6.

We can then collect all the fixed effects to be estimated in the vec-
tor ω∗NN = (ξ∗1 , ...ξ

∗
N , ζ

∗
1 , ...ζ

∗
N )′, which can be seen as a nuisance parame-

ter vector. Then, the true values of the parameters, denoted by β∗2,0 and

ω∗NN,0 = (ξ∗1,0, ...ξ
∗
N,0, ζ

∗
1,0, ...ζ

∗
N,0)′ are the solution to the population condi-

tional maximum likelihood maximization:

max
(β∗2 ,ω

∗
NN )∈Rdimβ∗+dimω∗

NN

Eω[L(β∗2 , ω
∗
NN )] (21)

with

L(β∗2 , ω
∗
NN ) (22)

= (N(N − 1)T )−1
{ N∑
i=1

∑
j 6=i

T∑
t=1

log fY2(y2,ij,t|x2,ij,t, ξ
∗, ζ∗, β∗2)− b(ι′NNω∗NN )2/2

}
where Eω denotes the expectation with respect to the distribution of the
data conditional on the unobserved effects and strictly exogenous variables,
b > 0 is an arbitrary constant, ιNN = (1′N ,−1′N )′ and 1N denotes a vector
of ones of dimension N .

The second term of L relates to a penalty that imposes a normalization
to identify the fixed effects in models with two-way fixed effects that enter
in the log-likelihood function as ξ∗i + ζ∗j . To be more specific, in this case,
adding a constant to all ξ∗i and subtracting the same constant from all ζ∗j
would not change ξ∗i +ζ∗j . Thus, without this normalization, the parameters
ξ∗i and ζ∗j are not identifiable.

To estimate the parameters, we solve the sample analogue of the follow-
ing equation:

max
(β∗2 ,ω

∗
NN )∈Rdimβ∗2+dimω∗

NN

L(β∗2 , ω
∗
NN ) (23)

In order to analyze the statistical properties of β∗2 , we first concen-
trate out the nuisance parameters ω∗NN , such that for given β∗2 , the optimal
ω̂∗NN (β∗2) is:

ω̂∗NN (β∗2) = argmax
ω∗NN∈R

dimω∗
NN
L(β∗2 , ω

∗
NN ) (24)
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Thus, the fixed effects estimator of β∗2 and ω∗NN are, by plugging in the
previous expression for ω̂∗NN (β∗2):

β̂∗2 = argmax
β∗2∈R

dimβ∗2 L(β∗2 , ω̂
∗
NN (β∗2)) (25)

ω̂∗NN (β∗2) = ω̂∗NN (β̂∗2) (26)

The source of the problem is that the dimension of the nuisance param-
eters ωNN increases with the sample size under asymptotic approximations
where N −→ ∞. To further describe the incidental parameter problem, de-
note:

β̄∗2 = argmax
β∗2∈R

dimβ∗2 Eω
[
L(β∗2 , ω̂

∗
NN (β∗2))

]
Using an asymptotic expansion for smooth likelihoods under appropriate

regularity conditions, provided by Fernández-Val and Weidner (2016), we
have that:

β̄∗2 = β∗2,0 +
B̄∞

(N − 1)T
+

D̄∞
(N − 1)T

+ oP (((N − 1)T )−1) (27)

For some constants B̄∞ and D̄∞. The derivation for this expression
can be found in the Appendix of Fernández-Val and Weidner (2016). As
explained by the authors, the expansion is obtained by first taking a first-
order Taylor expansion of the Equation (25) around the true value β∗2,0, as
it is usually done to obtain the asymptotic properties of such estimator.
Then, one should additionally take a second-order Taylor expansion of the

obtained term
∂L(β∗2,0,ω̂

∗
NN )

∂β∗2
around the true values of the nuisance terms.

Intuitively, this second step demonstrates how the estimates of the fixed
effects affect the estimates of the structural parameter β∗2 . We provide a
more formalized form of this argument in Appendix A.3. To obtain the
exact form of the expressions B̄∞ and D̄∞ a quite involved derivation is
needed. However, this is not the focus of our study, since we show later that
there are other possibilities to correct for the asymptotic bias generated by
these terms other than deriving the biases themselves.

Moreover, by the properties of the maximum likelihood estimator we
have that, under regularity conditions:√

N(N − 1)T (β̂∗2 − β̄∗2)
d−→ N(0, V̄B∞) (28)

For some V̄B∞. By substituting the expression for β∗2,0 obtained in Equa-
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tion (27), we obtain that, by Slutsky’s theorem:√
N(N − 1)T (β̂∗2 − β∗2,0) (29)

=
√
N(N − 1)T (β̂∗2 − β̄∗2)

+
√
N(N − 1)T

( B̄∞
(N − 1)T

+
D̄∞

(N − 1)T
+ oP (((N − 1)T )−1)

)
d−→ N

(B̄∞√
T

+
D̄∞√
T
, V̄B∞

)
We can see from Equation (27) that, as N −→ ∞, β̂∗2

p−→ β∗2,0 (β∗2,0 being
the true value of the parameter), thus, the estimates of β∗2,0 are consistent.
However, from Equation (29) we see that when T is fixed, the estimates
converge to a distribution that is not centered at zero, which leads to in-
correct asymptotic confidence intervals. This demonstrates the incidental
parameters problem, that boils down to an asymptotic bias in the estimates
of β∗2,0. This asymptotic bias arises as the order of the bias is higher than
the inverse of the sample size because of the small rate of convergence of the
fixed effects.

Conjecture 1. The asymptotic bias in the estimates of β∗2,0 carries over
both to the estimates of the fixed effects, ω̂∗NN and to the estimates of the

inverse Mills-ratio, λ̂ij,t.

This conjecture follows from Theorem B.1. in the appendix of Fernández-
Val and Weidner (2016), where it is shown that the asymptotic expansion
of ω̂∗NN around ωNN,0 depends on (β∗2 − β∗2,0). Moreover, as we see from
Equation (26), the estimates of the fixed effects are a function of the esti-
mates of β∗2 . Therefore, it is expected that given an asymptotically biased
estimator β̂∗2 , the estimators of the fixed effects will also converge to a lim-
iting distribution not centered around its true values. Also, as mentioned
by Fernández-Val and Weidner (2016), its rate of convergence is slower than
that of the structural parameter,

√
(N − 1)T . Thus, we expect that, under

fixed T: √
(N − 1)T (ω̂∗NN − ωNN,0)

d−→ N
(
Ā∞, V̄A∞

)
. (30)

For some constant Ā∞. Remembering that λ̂ij,t is a function of the
estimated fixed effects and of the estimated structural parameters, if the
rates of convergence of both random variables would be the same, one could
straightforwardly apply the Delta method to determine the distribution of
λ̂ij,t.

In our case, as the fixed effects converge at a slower rate, we expect that
the joint distribution will only converge at the slower rate. On this note, if
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we scale the random variable (β̂∗2 − β∗2,0) by this rate it is expected that it
converges to a constant denoted by C̄∞. Thus:

√
(N − 1)T

(
β̂∗2 − β∗2,0

ω̂∗NN − ωNN,0

)
d−→ N

((C̄∞
Ā∞

)
,

(
0 0
0 V̄A∞

))
Having defined this joint distribution, one can apply the Delta method

easily, verifying that the limiting distribution of λ̂ij,t is asymptotically biased
even if the constant C̄∞ is zero. In case the constant is not zero, the only
possibility for it being asymptotically unbiased would be if the biases from
the fixed effects and from the structural parameters cancel out. However,
there is no reason to believe that this should be the case.

Under this conjecture, it is noteworthy that the conditions of Theorem
1 do not hold. Therefore, if the selection equation is estimated by probit in
this case, it is likely that the estimators of β1 in Equation (9) will also be
asymptotically biased. A more formalized version of this conjecture is left
for further research. For now, we aim to explore the finite sample properties
of such estimator through Monte Carlo simulations.

To start addressing this issue, one can start looking at a possible asymp-
totically unbiased estimator for the structural parameter β∗2 . Fernández-Val
and Weidner (2016) tackles this problem by deriving asymptotic correc-
tions, based on defining analytically the values of B̄∞, D̄∞ and V̄B∞. Other
studies propose different solutions for the incidental parameter problem in
nonlinear panel data models. To name a few, Jochmans (2019) proposes
modifications of the profile likelihood in models for dyadic interactions, cov-
ering the so called β-models in the framework of network formation, and
delivering asymptotic unbiased estimators; Graham (2017) provides an esti-
mator for undirected dyadic link formation in network models, which takes
into account the degree heterogeneity of agents (the fixed effects in our ap-
proach) through a tetrad logit (TL) estimator that conditions on sufficient
statistics for the degree heterogeneity; and Dzemski (2019) also provides
analytical asymptotic corrections for estimating a model of directed dyadic
link formation.

We propose in this study, instead of relying on approximate asymptotic
corrections for such biases, to estimate the parameters through a conditional
logit approach proposed by Charbonneau (2017). Such approach differences
away both fixed effects. The advantage of the estimator proposed by Char-
bonneau (2017) is that the analytical form of the biases does not need to
be specified, while still delivering consistent and unbiased estimates of the
parameters.
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7 The conditional logit estimation of Charbonneau
(2017)

The method displayed in this section relies on eliminating the two-way fixed
effects of the model in order to obtain estimates of the parameters β∗2 that
are not contaminated by the incidental parameter problem. This approach
is proposed by Charbonneau (2017) and is inspired on a well-known method
to eliminate fixed effects in single fixed effects model. The author shows that
it is possible to generalize the conditional maximum likelihood approach to
include two-way fixed effects only for logit models. Therefore, in order to
estimate the model given by Equations (10) and (11), we modify the previous
Assumption 6 to:

Assumption 8. The idiosyncratic terms η∗ij are i.i.d. across ij and follow a
standard logistic distribution conditional on the regressors and fixed effects.

To adopt this method, we consider only one period t for now. In the
following we will follow closely the exposition of Arellano and Honoré (2001)
for the approach to eliminate a single fixed effects from the model. Supposing
that the observations are given by:

y2,ij = 1{x′2,ijβ∗2 + ξ∗i + ζ∗j + η∗ij ≥ 0} for i = 1, ...N j = 1, ...N i 6= j

which, given Assumption 8 implies that:

Pr(y2,ij = 1|x2, ξ
∗, ζ∗, β∗2) =

exp(x′2,ijβ
∗
2 + ξ∗i + ζ∗j ))

1 + exp(x′2,ijβ
∗
2 + ξ∗i + ζ∗j ))

where x2 denotes the vectors of observations x2,ij for all possible pairs ij.
Fixing distinct indices i, j, k and l from the set form by individuals in
i′ = 1, ..., N , it is straightforward to show that the conditional likelihood
can be written such that it eliminates the fixed effects ξ:

Pr(y2,lj = 1|x2, ξ
∗, ζ∗, β∗2 , y2,lk + y2,lj = 1)

=
Pr(y2,lj = 1|x2, ξ

∗, ζ∗, β∗2) Pr(y2,lk = 0|x2, ξ
∗, ζ∗, β∗2)

Pr(y2,lj = 1, y2,lk = 0|x2, ξ∗, ζ∗, β∗2) + Pr(y2,lj = 0, y2,lk = 1|x2, ξ∗, ζ∗, β∗2)

=
exp((x2,lj − x2,lk)

′β∗2 + ζ∗j − ζ∗k)

1 + exp((x2,lj − x2,lk)′β
∗
2 + ζ∗j − ζ∗k)

which is again the specification of a logit model, with x2,lj,t − x2,lk,t as
explanatory variables and ζ∗j − ζ∗k as a fixed effect. We can also apply the
same procedure to another pair of observations ij, ik:

Pr(y2,ij = 1|x2, ξ
∗, ζ∗, β∗2 , y2,ij + y2,ik = 1)

=
Pr(y2,ij = 1|x2, ξ

∗, ζ∗, β∗2) Pr(y2,ik = 0|x2, ξ
∗, ζ∗, β∗2)

Pr(y2,ij = 1, y2,ik = 0|x2, ξ∗, ζ∗, β∗2) + Pr(y2,ij = 0, y2,ik = 1|x2, ξ∗, ζ∗, β∗2)

=
exp((x2,ij − x2,ik)

′β∗2 + ζ∗j − ζ∗k)

1 + exp((x2,ij − x2,ik)′β
∗
2 + ζ∗j − ζ∗k)
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These conditional likelihoods are free of the fixed effects ξ∗, but are still
dependent on the fixed effects ζ∗. The idea now is to combine the above two
expressions, by adding a condition on y2,ij,t + y2,lj,t = 1.

Defining : C ≡ {y2,lk + y2,lj = 1, y2,ij + y2,ik = 1}, we can now write:

Pr(y2,lj = 1|x2, ξ
∗, ζ∗, β∗2 , y2,lk + y2,lj = 1, y2,ij + y2,ik = 1, y2,ij + y2,lj = 1)

(31)

=
Pr(y2,lj = 1, y2,ij + y2,lj = 1|x2, ξ

∗, ζ∗, β∗2 , C)

Pr(y2,ij + y2,lj = 1|x2, ξ∗, ζ∗, β∗2 , C)

=
Pr(y2,lj = 1|x2, ξ

∗, ζ∗, β∗2 , C) Pr(y2,ij = 0|x2, ξ
∗, ζ∗, β∗2 , C)

Pr(y2,lj = 1, y2,ij = 0|x2, ξ∗, ζ∗, β∗2 , C) + Pr(y2,lj = 0, y2,ij = 1|x2, ξ∗, ζ∗, β∗2 , C)

=
exp(((x2,lj − x2,lk)− (x2,ij − x2,ik))

′β∗2)

1 + exp(((x2,lj − x2,lk)− (x2,ij − x2,ik))′β
∗
2)

This final probability no longer depends on fixed effects, allowing to
solve the incidental parameters problem in the presence of two-way fixed
effects. It is now possible to either write a conditional maximum likelihood
function or to apply the last equation to all quadruples of observations.
Charbonneau (2017) argues that the latter is easier to implement, with a
function to maximize:

N∑
i=1

∑
j 6=i

∑
l,k∈Zij

log
( exp(((x2,lj − x2,lk)− (x2,ij − x2,ik))

′β∗2)

1 + exp(((x2,lj − x2,lk)− (x2,ij − x2,ik))′β
∗
2)

)
(32)

where Zij is the set of all potential k and l that satisfy: y2,lk + y2,lj =
1, y2,ij + y2,ik = 1, y2,ij + y2,lj = 1 for a given pair ij. If we would instead
use the conditional maximum likelihood function, we would have that the
sufficient statistics for the fixed effects are given by

∑N
j=1 y2,ij ,

∑N
i=1 y2,ij .

Even though Charbonneau (2017) does not provide the asymptotic prop-
erties of this estimator, the later study by Jochmans (2018) provides such
results. To demonstrate them, we first define some variables for an easier
understanding:

z =
(y2,lj − y2,lk)− (y2,ij − y2,ik)

2

r = (x2,lj − x2,lk)− (x2,ij − x2,ik)

Given that y2,ij for any ij is a binary variables, z can take values from
the set {−1,−1/2, 0, 1/2, 1}. The event z ∈ {−1, 1} corresponds to the
condition that for any ij, l and k satisfies y2,lk + y2,lj = 1, y2,ij + y2,ik =
1, y2,ij + y2,lj = 1. From Equation (31) it follows that conditional on x2 and
z ∈ {−1, 1}, the distribution of z is logistic and does not depend on the
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fixed effects. Note that when z = 1, we have necessarily that y2,lk = 1, and
when z = −1, it is necessarily zero.

Thus, the conditional log-likelihood of a given quadruple is:

1{z = 1} log(F (r′β∗2)) + 1{z = −1} log(1− F (r′β∗2))

where F is the standard logistic distribution. This indicates that the ap-
proach by Charbonneau (2017) boils down to a standard logistic regression
with the transformed variables z and r, and considering only a subset of the
sample. This can also be seen in the objective function LCL defined later
in this section. Conditioning on the event z ∈ {−1, 1} means that not all
quadruples will be used to estimate β∗2 , which is a possible drawback of this
approach. Intuitively, conditioning on this event means that for an unit i,
if a link is formed with another unit j, such that y2,ij = 1, then a link must
not be formed with the unit k, such that y2,ik = 0. The same holds for
the other units in the quadruples considered. In the terminology of Rasch
(1960) those units are refered to as movers.

In the entire dataset, there are mn distinct quadruples:

mn =

(
N
2

)(
N − 2

2

)
=
N(N − 1)(N − 2)(N − 3)

4

Jochmans (2018) introduces further a function σ that maps the possible
quadruples in the dataset to an index set Nmn = {1, 2, ...mn}, such that it is
possible to write the objective function in a comprehensible manner. Based
on this, we extend the notation by defining the following random variables:

z(σ{l, i; j, k}) =
(y2,lj − y2,lk)− (y2,ij − y2,ik)

2

r(σ{l, i; j, k}) = (x2,lj − x2,lk)− (x2,ij − x2,ik))

With this extended notation, the estimator can be written as:

β̂∗2 = argmaxβ∗2∈Θ LCL(β∗2)

where Θ refers to the parameter space searched over, and LCL is the objec-
tive function given by:

LCL(β∗2) =
∑

σ∈Nmn

1{z(σ{l, i; j, k}) = 1} log(F (r(σ{l, i; j, k})′β∗2))

+ 1{z(σ{l, i; j, k}) = −1} log(1− F (r(σ{l, i; j, k})′β∗2))

Even though the objective function sums over all possible quadruples,
only the quadruples that are in the set given by the event z ∈ {−1, 1} are
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incorporated into the sum. Therefore, we can denote that the number of
such quadruples is given by:

m∗n =
∑

σ∈Nmn

1{z ∈ {−1, 1}}

We can further write the expected fraction of quadruples in the dataset
that contributes to the log-likelihood as a function of the random variable
m∗n:

pn =
E(m∗n)

mn
=

∑
σ∈Nmn Pr{z ∈ {−1, 1}}

mn

Now we turn to the assumptions needed for both the consistency and
asymptotic normality and unbiasedness of the estimator, provided by Jochmans
(2018).

Assumption 9. β∗2,0 is interior to Θ, which is a compact subset of Rdimβ∗2 .

Assumption 10. For all (i, j) ∈ N ×N,E(||x2,ij ||2) < c, where c is a finite
constant.

Assumption 11. Npn −→∞ as N −→∞ and the matrix

lim
N−→∞(mnpn)−1

∑
σ∈Nmn

E(r(σ{l, i; j, k})r(σ{l, i; j, k})′f(r(σ{l, i; j, k})′β∗2,0)1{z ∈ {−1, 1}})

has maximal rank, where f is the density of the logistic function.

Assumptions 9 and 10 are standard to establish consistency in nonlinear
models. Assumption 11 is made to guarantee identifiability of the parameter.
Note that it allows the expected fraction of quadruples to enter the log-
likelihood, and be informative in this context, to go to zero as N grows.
The requirement that pn does not shrink faster than N−1 is needed for the
uniform convergence of LCL(β∗2). As mn is of order O(N4), this condition
implies that E(m∗n) = mnpn −→ ∞. Thus, even if the expected fraction of
quadruples to enter the log-likelihood is allowed to go to zero as N grows,
it is still needed that the accumulation of informative quadruples does not
cease as N grows. In practice, this translates to the fact that even if a lower
percentage of the quadruples enter the log-likelihood when new individuals
are added to the dataset, the total number of observations considered in the
estimation should continue to grow. The second part of Assumption 11 is a
standard identification condition. Then, the following theorem arises:

Theorem 2. Let assumptions 8 - 11 hold. Then, β̂∗2
p−→ β∗2,0 as N −→∞.

The proof of this theorem is provided in the online Appendix of Jochmans
(2018). In order to establish the limiting distribution of the estimator, a
stronger form of Assumption 10 is made:
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Assumption 12. For all (i, j) ∈ N ×N,E(||x2,ij ||6) < c, where c is a finite
constant.

Defining:

s(σ;β∗2) = rσ{1{zσ = 1}(1− F (rσ
′β∗2))− 1{zσ = −1}F (rσ

′β∗2)},

where rσ = r(σ{l, i; j, k}) and zσ = z(σ{l, i; j, k}). Then, further defining:

υij(β
∗
2) =

∑
i 6=l,j

∑
k 6=i,l,j

s(σ{l, i; j, k};β∗2)

Υ(β∗2) =
N∑
l=1

∑
j 6=l

υijυ
′
ij

Denoting S the score vector, we have that Υ(β∗2,0)−1/2S(β∗2,0)
d−→ N(0, I),

where I is the identity matrix of dimension of β∗2 . The Hessian matrix is
given by:

H(β∗2) =
∂2LCL(β∗2)

∂β∗2∂β
∗
2
′ =

∑
σ∈Nmn

rσr
′
σf(r′σβ

∗
2)1{z ∈ {−1, 1}}

Finally, defining:

Ω = H(β̂∗2)
−1

Υ(β̂∗2)H(β̂∗2)
−1

Jochmans (2018) arrives at the following result:

Theorem 3. Let Assumptions 8 - 11 hold. Then ||β̂∗2−β∗2,0|| = Op(1/
√
N(N − 1)pn)

and
Ω−1/2(β̂∗2 − β∗2,0)

d−→ N(0, I)

as N −→∞

The proof of this theorem is also provided in the online Appendix of
Jochmans (2018). The intuition behind this result is relatively simple. Even
though the objective function has the functional form of a standard logistic
regression, the asymptotic variance of the estimator is not the usual textbook
formula, where the information matrix equality holds, but a sandwich form
of it. This is due to the fact that the transformed variables are functions of
quadruples of units, with the same units appearing in several combinations
of quadruples. Therefore, this introduces cross-sectional dependences that
must be corrected.
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There are also several aspects of network theory embedded in this model
and respective estimators. When studying network formation, this frame-
work allows to control for degree heterogeneity, which is given by the fixed-
effects (that even though are not estimated, are controlled for). While previ-
ous studies that relied on asymptotic bias corrections (for instance, Dzemski
(2019)) allowed it only for dense networks, this framework allows it also for
sparse networks. This difference comes from the fact that in asymptotic bias
corrections approaches, the fixed-effects need to be estimated. In the case of
sparse networks, those estimates may not be consistent or converge only at
a very slow rate. On the other hand, in this method, the fixed-effects need
not be estimated, and the probability of link formation is allowed to shrink
towards zero.

This estimation method also permits to test for homophily in network
formation, once, given the limiting distribution, it is possible to conduct
inference on variables that reflect how similar the characteristics of units i
and j in a dyad are.

The drawback of this approach is that the independence of the error
terms in Assumption 8 results in links being conditionally independently
formed. Therefore, it is a not well-suited estimator in cases where the link
decisions made by a given unit (node) is dependent on the decisions of other
units. Evidently, it also rules out cases where a high degree of transitivity
is present in the network 6.

In the next sections, we will provide two approaches to estimate the
parameters of the observation Equation (9) given these estimates for the
selection equation, denoted from now on β∗2,CL. The first approach relies
on retrieving estimates of the fixed-effects in the selection equation, and
applying the Heckman methodolody to control for the sample selection.
The second approach relies on differencing out both the fixed-effects and
the regressor that corrects for the sample selection bias in the observation
equation.

8 The first approach: Hybrid estimates and Lee’s
transformation

In this section we introduce a method to retrieve the estimates for the fixed-
effects in Equation (11) once consistent and asymptotically unbiased esti-
mates of the parameter β∗2 are given. In this context, we use the estimates
that the previously outlined approach delivers, given by β̂∗2,CL.

Once the fixed effects estimates are available, we then introduce the
method described by Lee (1983). It essentially consists of the standard

6A high degree of transitivity arises in situations where two units are more likely to be
linked if there is a higher overlap between the sets of units that they are already linked to
Graham (2020).
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Heckman approach, with the only difference being that some transforma-
tions are made to the selection equation, once estimators are now coming
from a logistic regression instead of a probit.

8.1 The hybrid approach of Wooldridge et al. (2018)

The conditional logit approach defined above delivers
√
N(N − 1)pn-consistent

and asymptotically unbiased estimators of the parameters β∗2 as long as the
covariates are strictly exogenous. However, this approach alone does not
yield average partial effects estimates or the predicted probabilities of the
outcome y2,ij,t as the distribution of the unobserved heterogeneity is not
specified such that it can be integrated out. In our setting, the predicted
probabilities play a role in the correction for sample selection bias, and there-
fore, are needed. Such estimates can be obtained with the conditional logit
approach by inserting as well an estimate of the unobserved fixed effects.
This hybrid approach consists of obtaining such estimates.

According to Wooldridge et al. (2018), the fixed effects ξ∗ and ζ∗ can
be estimated from the unconditional maximum likelihood when the slope
parameters are restricted to be equal to their conditional logit estimates.
Then, the estimated slope parameters and the first stage estimated fixed
effects are combined to form both APE estimates and predicted probabilities.

We can obtain the estimates of the fixed effects from:

ω̂∗NN (β∗2) = argmax
ω∗NN∈R

dimω∗
NN
L(β̂∗2,CL, ω

∗
NN )

Where the unconditional log-likelihood L is given by Equations (22) and
(20). The adjustment here is that we consider a single period t, and ac-
cording to Assumption 8, F is now a standard logistic distribution function.
Also, likewise in Section 6, we collect all the fixed effects to be estimated in
the vector ω∗NN = (ξ∗1 , ...ξ

∗
N , ζ

∗
1 , ...ζ

∗
N )′.

This approach was also proposed in other papers such as Bartolucci
and Pigini (2019). However, in both papers (Wooldridge et al. (2018) and
Bartolucci and Pigini (2019)), additional bias corrections are proposed, given
that in their setting one of the dimensions of the panel data is fixed (and
therefore, fixed effects estimates are inconsistent). In our framework, as
both dimensions go to infinity, it is expected that given an asymptotically
unbiased and consistent estimate of the structural parameters, the fixed
effects should also share those properties.

When retrieving the fixed effects, we also take into account only units for
which the outcome presents variability. This means that, for a given fixed
index i, there are N − 1 observations available such that i refers to the first
index in the dyad, i.e. yij for all j 6= i. Those N − 1 observations are only
taken into account if yij varies over the different indices j. The other way
round is also taken into account, i.e., for fixing an index j and considering
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the N−1 observations yij for all i 6= j. This is done because, as explained by
Kunz, Staub, and Winkelmann (2017), the fixed effects related to the fixed
index do not exist in cases where there is no variability in the outcome, a
problem known in the literature as the perfect prediction problem (Maddala
(1983)). As it is demonstrated in Kunz et al. (2017), the perfect prediction
means that for such observations, the maximum-likelihood estimator for
the fixed effects will not have a finite solution. This will lead to fixed effects
tending to minus infinity or plus infinity. This problem is formally illustrated
through a simple example in Appendix A.4.

Note that this hybrid framework is not well-suited for sparse networks,
once we are proposing to estimate the fixed effects.

Finally, for now we will focus on analysing only the finite sample prop-
erties of the estimates given by this hybrid approach through a simulation
exercise. While in frameworks where only one of the fixed effects in Equa-
tion (11) is present relies on partitioning the log-likelihood in the sum of
the individual log-likelihoods that depend on the structural parameters and
on the fixed effect for a given individual, in this case, this strategy is not
feasible, since no partition of the dataset depends on only one fixed effect.
Therefore, a more careful analysis of the asymptotic properties is left for
further research.

8.2 Sample selection estimator based on Lee (1983)

Once the estimates for both β∗2 and the fixed effects ω∗NN are obtained, it is
possible to take into account in the estimation of Equation (9) the sample
selection, even if we use a logistic model for the first stage of the Heckman
(1979) approach. The method is delineated in Lee (1983).

The idea is, rewriting Equation (9) as:

y1,ij,t = x′1,ijβ1 + ϑi + χj + σuu
∗
ij (33)

where u∗ij ∼ N(0, 1) and σu > 0. Considering the selection Equation (11),
under Assumptions 4, 5, 8, and assuming that x1, x2, ϑi, χj , ξ

∗
i , ζ
∗
j are ex-

ogenous variables, which essentially already follows from previously defined
assumptions:

Assumption 13. The errors are such that, given the covariates x1, x2 and
the fixed effects:

E(u∗|x1, x2, ϑi, χj , ξ
∗
i , ζ
∗
j ) = 0

E(η∗|x1, x2, ϑi, χj , ξ
∗
i , ζ
∗
j ) = 0

Var(η∗|x1, x2, ϑi, χj , ξ
∗
i , ζ
∗
j ) = 1

We now denote that the disturbances u∗ and η∗ conditional on x1, x2, ϑi,
χj , ξ

∗
i , ζ
∗
j have continuous distribution functions Φ(u∗) and F (η∗), that are
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completely specified, according to the previous assumptions, as a standard
normal distrubution and a standard logistic distribution, respectively.

As denoted before already, the dependent variable y1,ij conditional on
x1, x2, ϑi, χj , ξ

∗
i , ζ
∗
j has a well defined marginal distribution but it is not

observed unless y∗∗2,ij ≥ 0. The observed samples of y1,ij are thus censored
and follow y1,ij = x′1,ijβ1+ϑi+χj+σuu

∗
ij if and only if x′2,ijβ

∗
2+ξ∗i +ζ∗j ≥ −η∗ij .

The distributions of u∗ and η∗ are allowed to be correlated (supposing
a correlation of ρ, as denoted before in Section 5). Moreover, only the
marginal distributions are specified but not the joint bivariate distribution
of u∗ and η∗. Therefore, the idea of Lee’s transformation is to suggest a
proper bivariate distribution that can be applied to the Heckman sample
selection method with the specified marginal distributions.

We start by applying the following transformation to the error term:

η∗∗ = J(η∗) = Φ−1(F (η∗))

This transformation guarantees that the transformed variables is dis-
tributed as a standard normal with zero mean and unit variance. A bivari-
ate distribution having the required marginal distributions F (η∗) of η∗ and
Φ(u∗) of u∗ can be specified, from the following assumption.

Assumption 14. The transformed random variables η∗∗ and u∗ are jointly
normally distributed with zero means, unit variances and correlation of ρ.

Denoting by B(·, ·, ρ) a bivariate normal distribution N(0, 0, 1, 1, ρ), a
proper bivariate distribution of (η∗, u∗), denoted by H, is derived such that:

H(η∗, u∗, ρ) = B(J(η∗), u∗; ρ)

From the model specification, recall that y2,ij = 1 if and only if x′2,ijβ
∗
2 +

ξ∗i + ζ∗j ≥ −η∗ij . Given the logistic distribution, which is absolutely contin-

uous, F (·), the transformation J(·) = Φ−1(F (·)) is strictly increasing, such
that y2,ij = 1 if and only if J(x′2,ijβ

∗
2 + ξ∗i + ζ∗j ) ≥ J(−η∗ij), or, equivalently,

J(−x′2,ijβ∗2 − ξ∗i − ζ∗j ) < J(η∗ij)
Therefore, the previously censored regression model given by Equations

(33) and (11), with given standard normal and logistic marginal distribu-
tions Φ(u∗) and F (η∗) and the previously defined bivariate distribution, is
statistically equivalent to the model:

y1,ij,t = x′1,ijβ1 + ϑi + χj + σuu
∗
ij (34)

y∗∗∗2,ij = J(x′2,ijβ
∗
2 + ξ∗i + ζ∗j ) + η∗∗ij (35)

where y∗∗∗2,ij = J(y∗∗2,ij).
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We are now in a setting where the standard Heckman approach from
Section 5 can be applied. It follows from this specification that the inverse
Mills-ratio is now of the form:

y∗∗∗2,ij = J(x′2,ijβ
∗
2
′ + ξ∗i + ζ∗j ) + η∗∗ij (36)

Defining as before, zij = −x′2,ijβ∗2 − ξ∗i − ζ∗j , we have that the inverse
Mills-ratio can be written now as:

λij(zij) =
φ(J(zij))

1− Φ(J(zij))
=

φ(J(zij))

1− Φ(Φ−1(F (zij)))
=

φ(J(zij))

1− F (zij)
=
φ(J(zij))

F (−zij)

where for the last equality we used the symmetry of the logistic distribution.
Given the form of the inverse Mills-ratio one can correct Equation (33) for
the sample selection bias by including the term:

y1,ij = x′1,ijβ1 + ϑi + χj + (σuρ)λij(zij) + νij (37)

Again, by construction, E[νij |x1,ij , ϑi, χj , λij(zij), y
∗∗∗
2,ij > 0] = 0. Thus,

as before, we can include the inverse Mills-ratio as a regressor in the equa-
tion, and treat (σuρ) as a parameter to be estimated.

If we had the limiting distribution of the fixed effects and thus, the
joint distribution of the fixed effects and the structural parameters of (36),
the asymptotic properties of the parameters of this regression would follow
easily from the proof of the limiting distribution of the Heckman approach
provided in Heckman (1979). The only adjustment to be made is to account
for the fixed effects ϑi and χj in the derivation. We expect that, once the

estimates β̂∗2,CL are not asymptotically biased, the estimates for the fixed
effects of the selection equation provided by the hybrid approach not to
be asymptotically biased as well. Moreover, they should also be consistent
once we have that (N − 1) −→ ∞. Therefore, the estimated inverse-Mills
ratio should satisfy Theorem 1, even if they will likely converge only at a
slower rate than

√
N(N − 1), as the fixed effects converge at a slower rate.

9 Second approach: a modification to Kyriazidou
(1997)

9.1 An outline of the approach proposed in Kyriazidou (1997)

To outline the approach proposed by Kyriazidou (1997) to estimate Equation
(9) correcting for a possible sample selection bias, for now we assume that
we are back in a setting where T ≥ 2. As the estimation proposed here relies
on a consistent estimator7 for β∗2 , we will take into account the estimator

7In her paper, Kyriazidou (1997) imposes that only a consistent estimator for the first
stage is needed. Therefore, in theory one could even estimate it by the unconditional MLE
probit in this setting.
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defined in section 5, denoted by β̂∗2,CL. We will then impose the strong
assumption for now:

Assumption 15. The true value β∗2,0 does not vary over time.

Even if this is a strong assumption, our specified model given by Equa-
tions (9) - (11) accomodates it. In a general framework, we usually have
that the exogenous regressors x2,ij,t in Equation (11) are time-varying. How-
ever, suppose that they were constant in time, or that a linear combination of
those variables, up to a finite number of estimable parameters β∗2 is constant
over time (β∗2

′x2,ij,1 = β∗2
′x2,ij,2). In this scenario, for a dyad ij observed in

two consecutive periods, it is expected that the magnitude of the selection
effect in the observation equation to be the same in both periods. Therefore
time differencing on the Equation (9) would eliminate both the fixed effects
ϑi and χj and the sample selection effect. While this is unfeasible in most
settings, as the sample selection effect is most likely to vary over time, this
remark is the basis for the estimator proposed in this section.

We will follow a similar idea as the standard Heckman approach for
sample selection. In the first step, the parameters β∗2 are estimated by the
approach defined by Charbonneau (2017), yielding β̂∗2,CL. In the second
step, those estimates are used to estimate the time differenced observation
equation by a weighted least squares regression. The weights given to each
differenced dyad is such that, given the estimates β̂∗2,CL, observations for
which the difference in the sample selection effects approaches zero, a higher
weight is assigned, and vice-versa. Therefore, by considering that both
the observation equation is differenced and that the weights depend on the
difference of the sample selection effects, all fixed effects in the model given
by Equations (9) - (11) are differenced out, and their estimates are no longer
needed. 8

Besides the fact that estimators for the fixed effects are no longer needed,
one key advantage of this approach compared to the standard Heckman ap-
proach is that while the latter requires a full specification of the distribution
of the error terms, in general, this approach allows for distributions of both
error terms to be unspecified, provided that a semiparametric estimator for
the first stage is available. However, in our specified framework, we main-
tain the distributional assumptions of the error terms given by Assumptions
4, 5 and 8, and that such errors are independent of the fixed effects and
the explanatory variables, given by Assumption 13. We will provide a more
rigorous treatment of the arguments presented up to now and the proposed
estimator.

In the following we will denote the vector of explanatory variables for

8Therefore, in a standard panel data regression with fixed T, the fact that a possible
estimator for the fixed effects in the selection equation is inconsistent does not harm this
approach.
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both time periods t = 1, 2 and fixed effects by ςij ≡ (x1,ij,1, x1,ij,2, x2,ij,1, x2,ij,2,
ξ∗i , ζ

∗
j , ϑi, χj).
The fixed-effects in the observation Equation (9) could easily be differ-

enced out (timewise) for equations that are observed in both periods (i.e.,
y2,ij,1 = y2,ij,2 = 1). However, the sample selection problem remains, as we
can see from the populational regression:

E(y1,ij,1 − y1,ij,2|y2,ij,1 = y2,ij,2 = 1, ςij) (38)

= (x1,ij,1 − x1,ij,2)′β1 +E(uij,1 − uij,2|y2,ij,1 = y2,ij,2 = 1, ςij)

In a general framework, and also in our framework, there is no rea-
son to expect that the last term is zero, which would be given by either
E(uij,1|y2,ij,1 = y2,ij,2 = 1, ςij) = E(uij,2|y2,ij,1 = y2,ij,2 = 1, ςij) = 0, or
simply E(uij,1|y2,ij,1 = y2,ij,2 = 1, ςij) = E(uij,2|y2,ij,1 = y2,ij,2 = 1, ςij).

For ease of exposition note that for each time period, given that an
observation is observed in both t = 1, 2:

E(y1,ij,t|y2,ij,1 = y2,ij,2 = 1, ςij) (39)

= x′1,ij,tβ1 + ϑi + χj +E(uij,t|y2,ij,1 = y2,ij,2 = 1, ςij)

Using the same definition as in Section 5, we can assume that the con-
ditional expectation in the last term of Equation (39) is a smooth function
ϕij,t that depends on ςij and the joint conditional distribution of the error
terms, denoted by Hij,t(uij,t, η

∗
ij,1, η

∗
ij,2|ςij).

ϕij,t ≡ E(uij,t|y2,ij,1 = y2,ij,2 = 1, ςij) (40)

= E(uij,t|η∗ij,1 ≤ x′2,ij,1β∗2 + ξ∗i + ζ∗j , η
∗
ij,2 ≤ x′2,ij,2β∗2 + ξ∗i + ζ∗j , ςij)

= ϕ(x′2,ij,1β
∗
2 + ξ∗i + ζ∗j ,

′
2,ij,2 β

∗
2 + ξ∗i + ζ∗j ;Hij,t(uij,t, η

∗
ij,1, η

∗
ij,2|ςij))

= ϕij,t(x
′
2,ij,1β

∗
2 + ξ∗i + ζ∗j ,

′
2,ij,2 β

∗
2 + ξ∗i + ζ∗j ; ςij)

As we are considering that the errors are independent and identically
distributed over dyads ij and over time, and that they are independent of
ςij , this further reduces to:

ϕij,t = E(uij,t|y2,ij,t = 1) (41)

= E(uij,t|η∗ij,t ≤ x′2,ij,tβ∗2 + ξ∗i + ζ∗j )

= ϕ(x′2,ij,tβ
∗
2 + ξ∗i + ζ∗j )

This translates to the smooth function given by ϕij,t, which is used to
construct the inverse Mills-ratio as a function of the single index x′2,ij,tβ

∗
2 +

ξ∗i + ζ∗j , becoming invariant over dyads and time. Moreover, this function
depends on the joint distribution of the errors. If Assumption 14 is imposed
and the according transformations of Section 8.2 are made in the errors η∗,
the function takes the form ϕ(x) = φ(J(x))

F (−x) with J defined as in Section 8.2,
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and F the standard logistic distribution. However, this assumption is not
needed and neither are the transformations since the functional form of ϕ
is not needed in this approach as we will see later.

We can then rewrite the observation Equation (9) with the sample se-
lection correction as:

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + ϕij,t + νij,t (42)

where, again, νij,t = uij,t − ϕij,t. Therefore, by construction it satisfies that
E(νij,t|y2,ij,1 = y2,ij,1 = 1, ς) = 0.

As mentioned before, the main idea would be to difference out in Equa-
tion (42) both the fixed effects ϑi and χj and the sample selection effect
ϕij,t. However, as pointed out before, in general, ϕij,1 6= ϕij,2 in the case
that there is sample selection in the model. The equality would only hold if
x′2,ij,1β

∗
2 = x′2,ij,2β

∗
2 . If that was the case for all the individuals observed in

t = 1, 2 one could simply employ a first difference in the equation. In this
case the possibility of differencing out the equation for consistent estimation
would hold under weaker distributional assumptions: since the first differ-
ences over time is taken in the dyad level, the errors are not required to be
i.i.d. across dyads and nor to be independent of ςij . Then, the functional
form of ϕij,t would be allowed to vary across individuals.

In this scenario of a more flexible form of ςij , it would be sufficient that
the following assumption holds:

Assumption 16. Consider that (η∗ij,1, η
∗
ij,2, uij,1, uij,2) and (η∗ij,2, η

∗
ij,1, uij,2, uij,1)

are identically distributed conditional on ςij , i.e.,

H(η∗ij,1, η
∗
ij,2, uij,1, uij,2) = H(η∗ij,2, η

∗
ij,1, uij,2, uij,1)

Then, for an individual that has x′2,ij,1β
∗
2 = x′2,ij,2β

∗
2 :

ϕij,1 = E(uij,1|η∗ij,1 ≤ x′2,ij,1β∗2 + ξ∗i + ζ∗j , η
∗
ij,2 ≤ x′2,ij,2β∗2 + ξ∗i + ζ∗j , ςij)

= E(uij,2|η∗ij,2 ≤ x′2,ij,1β∗2 + ξ∗i + ζ∗j , η
∗
ij,1 ≤ x′2,ij,2β∗2 + ξ∗i + ζ∗j , ςij)

= ϕij,2

Thus, differencing would still be feasible under these weaker distribu-
tional assumptions. Defining:

Ψij = 1(x′2,ij,1β
∗
2 = x′2,ij,2β

∗
2)

Φij = 1(y2,ij,1 = y2,ij,2 = 1)

Denoting ∆ as the first differences operator, an OLS estimator for this
case would be:

β̆1 =
[ N∑
i=1

∑
j 6=i

∆x′1,ij∆x1,ijΨijΦij

]−1[ N∑
i=1

∑
j 6=i

∆x′1,ij∆y1,ijΨijΦij

]

34



Under appropriate regularity conditions, this estimator would be con-
sistent and asymptotically unbiased. However, in most cases we will likely
have that Ψij = 0 for all dyads ij. The approach then is to assign weights
for observations according to how close to zero x′2,ij,1β

∗
2 − x′2,ij,2β∗2 is. If ϕ

is a smooth function and provided that our estimator β̂∗2,CL is consistent,
observations that have this difference close to zero will also have that ∆ϕij
is close to zero, and therefore, the sample selection effects will be close to
be differenced out.

Therefore, given this argument, we can propose the estimator:

β̂1 =
[ N∑
i=1

∑
j 6=i

Ψ̂ij∆x
′
1,ij∆x1,ijΦij

]−1[ N∑
i=1

∑
j 6=i

Ψ̂ij∆x
′
1,ij∆y1,ijΦij

]
(43)

where Ψ̂ij is an estimated weight, based on β̂∗2,CL, that declines to zero as

the magnitude of |x′2,ij,1β̂∗2,CL − x′2,ij,2β̂∗2,CL| increases. Thus, we guarantee
that a higher weight is attributed to observations where the sample selection
effects almost cancel out. More precisely, these weights are given by:

Ψ̂ij =
1

hn
K
(∆x′2,ij β̂

∗
2,CL

hn

)
(44)

where K is a kernel density function, and hn is a sequence of bandwidths
which tends to zero as N(N − 1) −→ ∞. For a fixed magnitude of the
difference |x′2,ij,1β̂∗2,CL − x′2,ij,2β̂∗2,CL|, the weight Ψ̂ij shrinks as the sample
size increases.

Finally, note that this approach requires an exclusion restriction on the
set of regressors, i.e., that at least one of the variables in the vector x2 is not
contained in the vector x1. This is due to that, in cases where the differences
|x′2,ij,1β̂∗2,CL − x′2,ij,2β̂∗2,CL| shrinks to zero, if x1 = x2, the regressors in the
observation equation will also shrink and the usual rank conditions for the
weighted least squares will not hold.

9.2 The choice of the bandwidth hn

To compute the estimator, a kernel function K and a bandwidth parameter
hn need to be chosen. Kyriazidou (1997) states that the asymptotic perfor-
mance of the estimator is more influenced by the choice of the bandwidth
than by the choice of the kernel. Therefore, she focuses on this choice, set-
ting in most of her simulations the kernel to be a standard normal density
function. The choice of hn relies on the asymptotic results presented in the
paper, and intuitively consists on choosing it such that a measure of dis-
tance between the estimator and the parameters true values is minimized.
For brevity, we now present only the main results and intuitive explanations.
For a more formalized view, refer to Kyriazidou (1997).
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Using arguments provided by Bierens (1987), Kyriazidou (1997) shows
that for a given order of differentiability r of the expressionE(∆x′1ϕΦ|∆x′2β∗2)
and a given sample size N(N − 1), hn = h(N(N − 1))−µ should be chosen
such that µ = 1/(2(r + 1) + 1). This result follows from the rate of con-
vergence of the distribution of the estimator β̂1, which is maximized by
setting µ as small as possible. However, µ should be contained in the range
1 − 2p < µ < p/2, where p is the rate of convergence of the estimator for
β∗2 for the asymptotic results derived by the author to hold. The estimator
for β∗2 should also converge fast enough for the results to hold, namely, at
least at a rate p > (r+ 1)/(2(r+ 1) + 1). Therefore, combining the inequal-
ities for p and µ, we arrive at the result that the minimum µ is achieved
at µ = 1/(2(r + 1) + 1). For this chosen parameter, the estimator β̂1 will
converge at a rate (N(N − 1))−(r+1)/(2(r+1)−1).

Thus, the problem of choosing a bandwith boils down to choosing a
constant h. Kyriazidou (1997) shows that for any positive initially chosen
h, the distance between the estimator and the parameters’ true values is
minimized through a correction given by the following corollary:

Corollary 1. Let β̂1 be the estimator with window width hn = h(N(N −
1))−1/(2(r+1)+1), and β̂1,δ the estimator with window width hn,δ = h(N(N −
1))−δ/(2(r+1)+1) where δ ∈ (0, 1).
Define:

ˆ̂
β1 =

β̂1 −N(N − 1)−(1−δ)(r+1)/(2(r+1)+1)β̂1,δ

1−N(N − 1)−(1−δ)(r+1)/(2(r+1)+1)

Then, (
ˆ̂
β1 − β1) will converge to a normal distribution centered around 0 at

rate (N(N − 1))−(r+1)/(2(r+1)−1).

She shows that this Corollary results in obtaining an optimal bandwidth
h∗, given an initial chosen value of h. While h∗ can be pinned down and it
is necessary for the estimates of the asymptotic variance, one does not need
to pin down its value for obtaining the asymptotically corrected estimates
of β1 (however the estimates of β1 and the value of h∗ are tied down).

The steps to implement this estimator are:

• Step 1: For a given r and N(N − 1), choose any hn = h(N(N −
1))−1/(2(r+1)+1) and any hn,δ = h(N(N − 1))−δ/(2(r+1)+1) with an ar-
bitrary positive h and 0 < δ < 1.

• Step 2: Compute both β̂1 and β̂1,δ.

• Step 3: From the Corollary above, obtain the asymptotically unbiased

estimator
ˆ̂
β1.

Another interesting result obtained in Kyriazidou (1997) is that given an
appropriately chosen hn as mentioned above, using an estimated value for β∗2
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does not affect the limiting distribution of the estimator for β1. This follows
from the lower bound imposed on µ, that guarantees that β1 is estimated
at a lower rate than β∗2 .

More formally, defining the scalar index X2,ij = ∆x2,ijβ
∗
2 , its estimated

counterpart X̂2,ij = ∆x2,ij β̂
∗
2,CL and the following quantities:

Sxx =
1

N(N − 1)

N∑
i=1

∑
j 6=i

1

hn
K
(X2,ij

hn

)
∆x′1,ij∆x1,ijΦij

Ŝxx =
1

N(N − 1)

N∑
i=1

∑
j 6=i

1

hn
K
(X̂2,ij

hn

)
∆x′1,ij∆x1,ijΦij

Sxν =
1

N(N − 1)

N∑
i=1

∑
j 6=i

1

hn
K
(X2,ij

hn

)
∆x′1,ij∆νijΦij

Ŝxν =
1

N(N − 1)

N∑
i=1

∑
j 6=i

1

hn
K
(X̂2,ij

hn

)
∆x′1,ij∆νijΦij

Sxϕ =
1

N(N − 1)

N∑
i=1

∑
j 6=i

1

hn
K
(X2,ij

hn

)
∆x′1,ij∆ϕijΦij

Ŝxϕ =
1

N(N − 1)

N∑
i=1

∑
j 6=i

1

hn
K
(X̂2,ij

hn

)
∆x′1,ij∆ϕijΦij

By choosing an appropriate hn, Kyriazidou (1997) shows that the quan-
tities Ŝxx, Ŝxν and Ŝxϕ have the same probability limits as their infeasible
counterparts Sxx, Sxν and Sxϕ (which consider β∗2 instead of its estimator).

Then, (i) by taking the first differences of Equation (42) and premulti-
plying it by Φ̂ij∆x

′
1,ij , (ii) considering the estimator β̂1, and (iii) defining β̃1

to be the unfeasible estimator (i.e., evaluated at the true β∗2), we can easily
write:

β̃1 − β1 = S−1
xx (Sxν + Sxϕ)

β̂1 − β1 = Ŝ−1
xx (Ŝxν + Ŝxϕ)

Therefore, it follows that if the quantities Ŝxx, Ŝxν and Ŝxϕ have the
same probability limits as their infeasible counterparts, the estimators β̃1

and β̂1 will also have the same limiting distributions.
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9.3 A modification to the approach

Even though in most settings we have that the regressors x1,ij,t vary over
time, in particular cases such as in trade applications, most of the explana-
tory variables in the observation equation do not have any variability over
time. For instance, traditional variables used in trade applications are the
distance between countries, whether they share the same currency, or have
the same official language, etc. This implies that, in the delineated approach
by Kyriazidou (1997), the coefficients of such regressors are not estimable,
since the method relies on time differencing.

We propose in this section a modification to the previous method, that
is feasible due to the dyadic structure of our data. Instead of differencing
over time, we propose that the variables are differenced over dyads, such
that, fixing a single time period t, and for a quadruple given by the indices
i, j, k and l:

∆ijlky1,ij = (y1,ij − y1,ik)− (y1,lj − y1,lk)

Given this definition for the operator ∆ijlk, it is easy to see from Equation
(9) that such method would difference out the fixed effects ϑi and χj . By
redefining the vector ςij to collect the explanatory variables for the quadruple
ij, ik, lj, lk, and their respective fixed effects, yielding:

ςijlk ≡ (x1,ij , x2,ij , x1,ik, x2,ik, x1,lj , x2,lj , x1,lk, x2,lk, ξ
∗
i , ξ
∗
l , ζ
∗
j , ζ
∗
k , ϑi, ϑl, χj , χk)

It follows that:

E[∆ijlky1,ij |y2,ij = y2,ik = y2,lj = y2,lk = 1, ςijlk]

= ∆ijlkx
′
1,ijβ1 +E(∆ijlku1,ij |y2,ij = y2,ik = y2,lj = y2,lk = 1, ςijlk)

Based on the previously outlined baseline approach of Kyriazidou (1997),
if we then define:

ϕijlk = E(uij |y2,ij = y2,ik = y2,lj = y2,lk = 1, ςijlk)

We can write the equivalent of Equation (42) for this modification:

y1,ij = β′1x1,ij + ϑi + χj + ϕijlk + νij

For a given dyad ij there is more than one associated quadruple, as
there are several combinations of l and k (the restriction being that all
indices must be different). However, for all such quadruples, it follows that,
as before, νij = uij − ϕijlk. Therefore, by construction it is sufficient that
E(νij |y2,ij = y2,ik = y2,lj = y2,lk = 1, ςijlk) = 0.

Moreover, under the Assumptions 4, 5 and 8, it follows that the equiva-
lent of the conditional exchangeability Assumption 16 for this modification
is satisfied.
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Therefore, following the same logic as in the previous subsection, we can
construct an estimator for β1 such that:

β̂1 =
[ N∑
i=1

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

Ψ̂ijkl∆ijklx
′
1,ij∆ijklx1,ijΦijkl

]−1
(45)

[ N∑
i=1

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

Ψ̂ijkl∆ijklx
′
1,ij∆ijkly1,ijklΦijkl

]
Accordingly, Φijkl is defined as: Φijkl = 1(y2,ij = y2,ik = y2,lj = y2,lk =

1). Also in this modification, Ψ̂ijkl is an estimated weight, based on β̂∗2,CL
that declines to zero as the magnitude of |∆ijklx

′
2,ij β̂

∗
2,CL| increases. Thus,

we continue to guarantee that a higher weight is attributed to observations
where the sample selection effects almost cancel out. More precisely, in this
modification these weights are given by:

Ψ̂ijkl =
1

hn
K
(∆ijklx

′
2,ij β̂

∗
2,CL

hn

)
(46)

where K is a kernel density function, and hn is a sequence of bandwidths.
The remaining of the modification follows from the previous subsection.

The potential drawbacks of this method are that, as we need that all
quadruples need to be observed for the differentiation to hold, the approach
may not be well suited for sparse networks, where few links are formed given
a number of units N .

Moreover, even though Kyriazidou (1997) has provided results for the
asymptotic variance of the estimator defined in the previous subsection, we
do not consider this here, since the same indices are present in several com-
binations of quadruples, and a correlation is introduced in the transformed
error terms, such that the asymptotic variance should account for that. This
was not an issue before, once the differentiation was over time for a given
dyad and errors are i.i.d. over time and dyads.

10 Simulations

In this section we aim to access the finite sample behavior of the proposed
estimators through a Monte Carlo simulation exercise.

We compare, for different designs, how the estimators for the first stage
equation (selection equation) given by the standard Heckman approach and
by the methodology proposed by Charbonneau (2017) perform in finite sam-
ples. For this first stage, the standard Heckman approach boils down to a
probit estimation with dummies for the fixed effects (when the specified
model contains fixed effects, otherwise a standard probit is employed). In
cases where there are fixed effects in the selection equation, we also employ
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a probit estimation that corrects for the perfect prediction problem, i.e.,
we drop (only for the first stage estimation) observations where for one of
the units in the pairwise interaction (dyad) the outcome in the first stage is
invariant. It is expected that, due to the incidental parameters problem, the
estimator given by Charbonneau (2017) provides better results than both
methods in terms of unbiasedness since they present an asymptotic bias, as
explained in Section 6.

For the second stage (observation equation), we analyze the behavior of
the estimators given by:

i. The standard Heckman approach, where the estimates of the probit
in the first stage for both the structural parameters and the fixed
effects of the selection equation are plugged into the functional form
of the inverse Mills-ratio (given by Equation (16)). A standard OLS
with dummies for the fixed effects is estimated for the observation
equation, including the inverse Mills-ratio as a regressor.

ii. The standard Heckman approach, similar to the previous item with the
only difference being that we take into account the estimates from the
probit corrected for the perfect prediction problem in the first stage.

iii. The hybrid approach outlined in Section 8. In this approach the es-
timates given by the method of Charbonneau (2017) for the selection
equation are taken as given. The fixed effects for the selection equa-
tion are estimated through the hybrid approach using the uncondi-
tional log-likelihood, restricting the structural parameters to be equal
to their estimates. Finally, the inverse Mills-ratio is calculated for each
observation according to the transformation proposed by Lee (1983),
and included as a regressor in a standard OLS regression for the obser-
vation equation with dummies for the fixed effects. In designs where
there are no fixed effects, the estimator takes into account only the
Charbonneau estimates of the first stage and applies the transforma-
tion proposed by Lee (1983).

iv. The modified estimator based on Kyriazidou (1997). Again, we take
as given the estimates given by the method outlined by Charbonneau
(2017) for the selection equation. With such an estimator, we can
calculate the weights for each observation (setting the Kernel to be a
standard normal density function, as in Kyriazidou (1997)), and we
transform the variables such as outlined in Section 9.3 to perform a
weighted least squares regression for the observation equation.

As the possible biasedness of the first stage estimator for the standard
Heckman approach might carry over to the estimates of the second stage, we
expect the latter two approaches to provide better finite sample properties.
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10.1 Data generating process and different designs

The data for the simulations are generated according to the following general
DGP:

y1,ij = x11,ijβ11 + x12,ijβ12 + ϑi + χj + uij (47)

y2,ij = 1(y∗∗2,ij > 0) (48)

y∗∗2,ij = x21,ijβ
∗
21 + x22,ijβ

∗
22 + x23,ijβ

∗
23 + ξ∗i + ζ∗j + η∗ij (49)

(i = 1, ...N ; j = 1, ...N, i 6= j)

Throughout this simulation exercise we consider only one time period.
Given the general DGP, we provide seven different designs. For all the de-
signs we set β11 = 1, β12 = 2.5, β∗21 = 0.8, β∗22 = 1 and β∗23 = 2.

Design 1: We consider that there are no fixed effects, setting ϑi = χj =
ξ∗i = ζ∗j = 0 ∀i, j. The remaining explanatory variables are generated
according to:

• x1 = rndn, where rndn is a standard normal.

• x2 = 1{rndn ≤ 0.5}, being a bivariate variable.

• x3 = 1{rndn ≤ 0.5}, being a bivariate variable that satisfies an exclu-
sion restriction with respect to the observation Equation (47).

Design 2: There are fixed effects in the selection equation, but not in the
observation equation, setting ϑi = χj = 0 ∀i, j. The variables x1, x2 and
x3 are generated as in Design 1. The fixed effects ξ∗i and ζ∗j are drawn from
a standard normal distribution and are uncorrelated with the explanatory
variables.

Design 3: There are fixed effects in the observation equation, but not in
the selection equation, setting ξ∗i = ζ∗j = 0 ∀i, j. The variables x1, x2 and
x3 are generated as in Design 1. The fixed effects ϑi and χj are drawn from
a standard normal distribution and are uncorrelated with the explanatory
variables.

Design 4: There are fixed effects in both equations, and they are gener-
ated according to Designs 2 and 3, being uncorrelated with the explanatory
variables. The variables x1, x2 and x3 are generated as in Design 1.

Design 5: There are fixed effects in the selection equation, but not in
the observation equation, setting ϑi = χj = 0 ∀i, j. The fixed effects ξ∗i
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and ζ∗j are generated according to Design 2, but are now correlated with the
explanatory variable x1. While x2 and x3 are obtained as in Design 1, we
now set: x1 = rndn + ξ∗i + ζ∗j , where rndn is a standard normal.

Design 6: There are fixed effects in the observation equation, but not
in the selection equation, setting ξ∗i = ζ∗j = 0 ∀i, j. The fixed effects ϑi
and χj are generated according to Design 3, but are now correlated with the
explanatory variable x1. While x2 and x3 are obtained as in Design 1, we
now set: x1 = rndn + ϑi + χj , where rndn is a standard normal.

Design 7: There are fixed effects in both equations, and they are generated
according to Designs 2 and 3, but are now correlated with the explanatory
variables x1. While x2 and x3 are obtained as in Design 1, we now set:
x1 = rndn + ξ∗i + ζ∗j + ϑi + χj , where rndn is a standard normal.

The error terms are generated by assuming that there is no misspecifications
in the distributional assumptions made by each estimator. This translates
to:

• For the Heckman approaches we consider that the error terms of Equa-
tions (47) and (49) follow a bivariate normal distribution, with both
means set to zero, unit variances and a correlation of −0.7.

• For the Hybrid and Kyriazidou approaches, as both rely on the esti-
mates obtained by Charbonneau estimators in the first stage, we con-
sider that the error term of Equation (49) is logistically distributed
with mean zero and variance one, and the error term of Equation (47)
is normally distributed with mean zero and variance one. However, to
ensure that Assumption 14 is satisfied, such that Lee’s transformation
can be applied, we start with generating two random variables that
are bivariate normally distributed with with both means set to zero,
unit variances and a correlation of −0.7. Then, we apply a transfor-
mation J(·) = F−1(Φ(·)) to one of them turning it into a logistically
distributed variable, where F is the standard logistic distribution func-
tion, and Φ is the standard normal distribution function.

We also assume that there is no misspecification in the parametric form
of models. For designs in which either all fixed effects or the fixed effects for
a given equation are set to zero, we estimate only the remaining parameters
according to the approaches highlighted in the beginning of this section.
That is, for instance, in Design 1, we estimate the parameters β11, β12, β∗21,
β∗22 and β∗23, but not the fixed effects.

For each design, we consider 500 Monte Carlo simulations. For all de-
signs, we consider a sample size given by N = 25, i.e., giving a total of
N(N −1) = 600 observations (where obviously some are set to have missing
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values for y1, given by the sample selection). Ideally, a set of simulations
for a larger N should be provided. However, for now, we do not provide
such results given the computational burden to estimate mainly the ap-
proach deliniated by Charbonneau (2017) and the modified version for the
approach of Kyriazidou (1997). The computational costs arise as the esti-
mation involves the combinations of all possible quadruples.

10.2 First stage (estimation of the selection equation)

In this section we present the results obtained from the Monte Carlo sim-
ulations for the first stage (selection equation). We denote Probit the esti-
mators obtained with the standard Heckman procedure, which boils down
to a MLE probit estimator with dummies for fixed effects when the design
presents fixed effects. We denote Probit (PP) the estimators given by the
same approach but corrected for the perfect prediction problem (notice that
this estimator is only employed in designs which there are fixed effects in
the selection equation). We denote by Charbonneau the estimators of the
structural parameters using Charbonneau (2017)’s approach. Finally, we
denote by Hybrid the estimators for the fixed effects obtained by the uncon-
strained MLE restricting the structural parameters to be the estimated by
Charbonneau.

We report the mean bias, the mean standard deviation (used as a mea-
sure of precision), the mean standard errors and the test size given by the
t-statistic, considering a 5% level of significance. These values can be seen
in Tables 1 - 4 for the seven proposed designs.

We can see at first that for designs that do not contain fixed effects in the
selection equation (1,3 and 6), both approaches deliver similar results. In
some cases the Probit estimators even present less bias than Charbonneau.
Given the reduced sample size, the size of the tests are close enough to 5%.
However one should note that the Charbonneau estimator is more imprecise
(higher standard deviations).

For designs that do contain fixed effects in the selection equation (De-
signs 2,4,5 and 7), the Probit and Probit (PP) estimates of the structural
parameters are severily biased. The Charbonneau estimator, despite slightly
biased, reduces dramatically the bias compared to the previous estimators.
Moreover, in her simulation design Charbonneau (2017) shows that the bias
is even further reduced for larger sample sizes. As we will mention later, the
distribution of estimates of the fixed effects for the Probit (PP) are closer to
the real distribution when comparing to the Probit estimates, since the per-
fect prediction problem is corrected. However, the biases in the structural
paramaters remain of the same magnitude. This indicates that such biases
in the structural parameters reflect to a larger extent the incidental param-
eter problem than the bias carried over from the fixed effects generated by
the perfect prediction problem.
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Mean Bias Mean Std.
Deviation

Mean Std.
Error

Test Size

Design 1
Probit
β∗
21 0.0182 0.1013 0.0955 0.062
β∗
22 0.0119 0.1342 0.1309 0.048
β∗
23 0.0367 0.2048 0.1964 0.054
z12 0.0249 0.2153

Logit Charbonneau
β∗
21 0.0167 0.1467 0.1313 0.0880
β∗
22 0.0174 0.2642 0.2402 0.0640
β∗
23 0.0285 0.2989 0.2671 0.0700
z12 0.0150 0.3258

Design 2
Probit
β∗
21 0.2229 0.1638 0.1352 0.3620
β∗
22 0.2647 0.2592 0.2265 0.2040
β∗
23 0.5103 0.3669 0.2895 0.3900
ξ∗1 0.3885 2.2845
ζ∗2 -0.1244 2.1568
z12 1.2188 4.2462

Probit Perfect Prediction
β∗
21 0.2226 0.1790 0.1342 0.3440
β∗
22 0.2633 0.2693 0.2258 0.2380
β∗
23 0.5299 0.3576 0.2887 0.4280
ξ∗1 -0.2378 1.4069
ζ∗2 0.0988 1.3968
z12 -0.1289 2.6744

Logit Charbonneau + Hybrid
β∗
21 0.0282 0.1556 0.1424 0.0720
β∗
22 0.0254 0.2773 0.2609 0.0740
β∗
23 0.0624 0.3384 0.2902 0.0900
ξ∗1 0.0678 0.7491
ζ∗2 0.0230 0.7340
z12 0.0986 1.0803

Table 1: Simulation results for the estimated coefficients of the selection Equation 49
with N = 25 and 500 iterations. Test size refers to the size of the t-test at the 5%
significance level.The estimator Probit Perfect Prediction is only obtained for designs
with fixed effects in the selection equation. Empty cells refer to cases where the estimator
is still not available.
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Mean Bias Mean Std.
Deviation

Mean Std.
Error

Test Size

Design 3
Probit
β∗
21 0.0128 0.0968 0.0951 0.0400
β∗
22 0.0119 0.1298 0.1308 0.0400
β∗
23 0.0341 0.1956 0.1957 0.0460
z12 0.0197 0.1899

Logit Charbonneau
β∗
21 0.0271 0.1406 0.1319 0.0660
β∗
22 0.0295 0.2525 0.2403 0.0520
β∗
23 0.0609 0.2990 0.2700 0.0640
z12 0.0203 0.2993

Design 4
Probit
β∗
21 0.2128 0.1577 0.1349 0.3166
β∗
22 0.2705 0.2516 0.2280 0.1964
β∗
23 0.5251 0.3674 0.2913 0.3888
ξ∗1 0.3053 2.1540
ζ∗2 0.0048 2.3284
z12 1.0570 4.1692

Probit Perfect Prediction
β∗
21 0.2079 0.1638 0.1332 0.3020
β∗
22 0.2701 0.2689 0.2254 0.2160
β∗
23 0.5226 0.3773 0.2887 0.3920
ξ∗1 -0.1273 1.3715
ζ∗2 -0.1223 1.3494
z12 0.2169 2.7302

Logit Charbonneau
β∗
21 0.0374 0.1495 0.1437 0.0640
β∗
22 0.0379 0.2885 0.2628 0.0640
β∗
23 0.0649 0.3130 0.2913 0.0580
ξ∗1 -0.0366 0.7244
ζ∗2 0.0456 0.7549
z12 0.0458 1.0436

Table 2: Simulation results for the estimated coefficients of the selection Equation 49
with N = 25 and 500 iterations. Test size refers to the size of the t-test at the 5%
significance level.The estimator Probit Perfect Prediction is only obtained for designs
with fixed effects in the selection equation. Empty cells refer to cases where the estimator
is still not available.
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Mean Bias Mean Std.
Deviation

Mean Std.
Error

Test Size

Design 5
Probit
β∗
21 0.2781 0.2143 0.1634 0.3640
β∗
22 0.3388 0.3435 0.2746 0.2340
β∗
23 0.7094 0.4625 0.3600 0.4680
ξ∗1 0.3898 3.0340
ζ∗2 -0.0624 3.1310
z12 1.5217 5.9475

Probit Perfect Prediction
β∗
21 0.2842 0.2476 0.1634 0.3600
β∗
22 0.3496 0.3613 0.2718 0.2420
β∗
23 0.7083 0.5127 0.3578 0.4340
ξ∗1 -0.1602 1.7806
ζ∗2 0.0107 1.7311
z12 0.1085 3.3272

Logit Charbonneau + Hybrid
β∗
21 0.0347 0.1809 0.1661 0.0760
β∗
22 0.0148 0.3191 0.3030 0.0580
β∗
23 0.0500 0.3730 0.3391 0.0680
ξ∗1 -0.0173 0.8763
ζ∗2 -0.0368 0.8702
z12 -0.0069 1.2908

Design 6
Probit
β∗
21 0.0125 0.0751 0.0751 0.0400
β∗
22 0.0082 0.1512 0.1403 0.0720
β∗
23 0.0351 0.1893 0.1922 0.0400
z12 0.0147 0.2176

Logit Charbonneau
β∗
21 0.0203 0.1537 0.1394 0.0820
β∗
22 0.0138 0.2701 0.2530 0.0620
β∗
23 0.0424 0.3025 0.2816 0.0760
z12 0.0540 0.3940

Table 3: Simulation results for the estimated coefficients of the selection Equation 49
with N = 25 and 500 iterations. Test size refers to the size of the t-test at the 5%
significance level.The estimator Probit Perfect Prediction is only obtained for designs
with fixed effects in the selection equation. Empty cells refer to cases where the estimator
is still not available.
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Mean Bias Mean Std.
Deviation

Mean Std.
Error

Test Size

Design 7
Probit
β∗
21 0.3071 0.2439 0.1733 0.3564
β∗
22 0.3862 0.3695 0.2894 0.2311
β∗
23 0.7637 0.5344 0.3816 0.4816
ξ∗1 0.4155 2.9246
ζ∗2 -0.0195 2.7139
z12 1.5677 5.3488

Probit Perfect Prediction
β∗
21 0.2968 0.2613 0.1724 0.3440
β∗
22 0.4048 0.3978 0.2897 0.2600
β∗
23 0.8006 0.6244 0.3855 0.4960
ξ∗1 -0.3102 1.9542
ζ∗2 0.0994 1.8887
z12 -0.0445 4.0003

Logit Charbonneau
β∗
21 0.0398 0.1811 0.1729 0.0540
β∗
22 0.0645 0.3357 0.3198 0.0700
β∗
23 0.0948 0.3746 0.3548 0.0620
ξ∗1 -0.1117 0.8924
ζ∗2 0.0073 0.9406
z12 -0.0854 1.2684

Table 4: Simulation results for the estimated coefficients of the selection Equation 49
with N = 25 and 500 iterations. Test size refers to the size of the t-test at the 5%
significance level.The estimator Probit Perfect Prediction is only obtained for designs
with fixed effects in the selection equation. Empty cells refer to cases where the estimator
is still not available.
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Figure 1: Histogram of the t-test for estimated β∗21 in Design 5

Figure 2: Histogram of the t-test for estimated β∗21 in Design 6

The results are even more improved for cases where the fixed effects are
correlated with the explanatory variable x1. While the biases in Charbon-
neau do not increase much when the fixed effects are correlated, indicating
that this estimator is robust to such correlations, the biases in the Probit
and Probit (PP) increase substantially. Not only that, but the standard
deviations for the Probit estimators increases by a lot when the fixed effects
are correlated. Note that the biases are even more severe for the parameters
of the binary regressors.

The biases of the Probit and Probit (PP) estimators are also evident
through the histogram for the t-tests of the estimated β∗21. For this analysis
we focus on Designs 5, 6 and 7, which includes cases where the fixed effects
are correlated with x1, and the improvements of Charbonneau are the bigger.
In Design 6, where there are no fixed effects, the distribution of both Probit
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Figure 3: Histogram of the t-test for estimated β∗21 in Design 7

Figure 4: QQ plot of estimated β∗21 in Design 5

Figure 5: QQ plot of estimated β∗21 in Design 6
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Figure 6: QQ plot of estimated β∗21 in Design 7

and Charbonneau t-tests are centered around zero, as illustrated in Figure
2, indicating that the tests have the right size. Also, from the shape of the
distribution it indicates further that the estimated parameters are normally
distributed. When there are fixed effects (Designs 5 and 7, in Figures 1 and
3), while the t-tests for Charbonneau are centered around zero, the ones for
the Probit and Probit (PP) are not, indicating that the estimates are biased
and the t-tests do not have the correct size.

The test sizes are also improved by the Charbonneau estimator. The
significance level of the Probit and Probit (PP) estimators are much larger
than 5%, in most cases ranging between 20% and 40%.

The distribution of the estimates are further assessed through the QQ-
plots in Figures 4 - 6. In Design 6, the plot indicates that the distributions for
both estimators are reasonably well approximated by a normal distribution.
In Designs 5 and 7, while the Charbonneau estimates the distributions are
also well approximated by a normal, the Probit and Probit (PP) estimates
have distributions that are more skewed. The same argument holds for the
estimates of β∗22 and β∗23, which graphs are in the Appendix B.1.

We now analyze the estimated fixed effects ξ∗i for i = 1 throughout the
simulations. For both Designs 5 and 7, the estimates obtained by the Hybrid
approach are much more closely distributed to the true fixed effects than
the Probit and Probit (PP) estimates. The Probit estimates are off due to
two reasons: (i) they are not corrected for the perfect prediction problem,
leading to extreme estimated values; and (ii) even for not extreme estimated
values, the distributions are not similar once the estimates are contaminated
by the (asymptotic) bias of the structural parameters. The latter problem
is evidenced when we look at the estimates of the fixed effects for the Probit
(PP) estimator. While the estimates vary over a smaller range once we
correct for the perfect prediction problem, leading to less biased estimates
in general for the fixed effects, their distribution is still quite different from
the distribution of its true values, still presenting a larger range than the
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Figure 7: Histogram of estimated ξ∗1 in Design 5

Figure 8: Histogram of estimated ξ∗1 in Design 7
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true distribution. This indicates that even when correcting for the perfect
prediction, the estimates of the fixed effects are still contaminated by the
bias in the structural parameters. In Tables 1 - 4 we can see that the
estimates of both fixed effects ξ∗i and ζ∗j have, in general, a much higher bias
in the Probit estimators than in the Hybrid.

Figure 9: Histogram of ẑ12 − z12 in Design 5

Figure 10: Histogram of ẑ12 − z12 in Design 6

Both the structural and fixed effects parameters estimated by the Probit
and Probit (PP) are biased when fixed effects are present in the DGP. The
structural parameters through the incidental parameters problem, and the
fixed effects parameters through the biased carried over from the estimation
of the β∗2 ’s and through the perfect prediction problem in the Probit. Both
sources of biases are carried over to the estimates of the single index zij .
This is seen in the previous tables, where in the designs with fixed effects,
the bias of the estimates of zij are generally much larger for the Probit and
Probit (PP). Even though the Probit (PP) produces less bias compared to
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Figure 11: Histogram of ẑ12 − z12 in Design 7

Figure 12: QQ plot of ẑ12 − z12 in Design 5

Figure 13: QQ plot of ẑ12 − z12 in Design 6
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Figure 14: QQ plot of ẑ12 − z12 in Design 7

the Probit estimator, since the perfect prediction problem is corrected, for
most designs (with the exception of Design 7) the biases in the index zij are
still larger than that of the Hybrid approach.

We can also see that through the histograms of the quantities ẑ12 − z12,
i.e, the difference of the estimated single index for the dyad i = 1, j = 2 and
its true value, given by Figures 9 - 11 . For Designs 5 and 7, the range of the
histograms for the Probit estimates is much larger than that of the Probit
(PP) or the Hybrid estimates. The Hybrid estimator presents an even lower
range than the Probit (PP). In the case where fixed effects are not present,
in Design 6, this is not true anymore.

Besides, the QQ-plots for such quantities, given by Figures 12 - 14, show
that in cases where there are fixed effects, the distribution of estimated
single index for the Probit and the Probit (PP) are not well approximated
by a normal, whereas for the Hybrid it is. There are two sources for that
problem: (i) the fact that the structural parameters estimated by the Probit
have a more skewed distribution than a normal, and (ii) the very extreme
values estimated by the fixed effects. While the latter is aliviated for the
Probit (PP) estimator, we notice that the estimations of the fixed effects
are still varying over a wider range than those of the Hybrid approach. The
QQ-plots indicates that for Design 5, the latter source dominates (as the
figure indicates that the distribution of the single index has heavy tails),
while for Design 7, the former source dominates. In the case of no fixed
effects, all estimates are well behaved.

10.3 Second stage (estimation of the observation equation)

In this section, we present the results obtained from the Monte Carlo simu-
lations for the second stage (observations equation). We denote by Heckman
the estimators obtained through the standard approach, that take into ac-
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count the Probit estimates in the first stage. Analogously, we denote by
Heckman (PP) the estimators given by the standard approach, taking into
account the Probit (PP) estimates in the first stage (we employ this estima-
tor only in designs where there are fixed effects in the selection equation).
We denote by Hybrid the estimators obtained by using the transformation
proposed by Lee (1983), and finally we denote by Kyriazidou the estimators
obtained through our modified methodology based on Kyriazidou (1997).

As we still do not have an analytical expression for the standard errors
of the latter two estimators, we will present only the mean bias and the
mean standard deviation of the estimators. Moreover, for the Kyriazidou
approach we also provide the estimators obtained through the asymptotic
bias correction highlighted in Section 9.2, and we denote them by Kyri-
azidou(corrected). Following the parameters chosen in the simulations in
Kyriazidou (1997), we set r = 1 and δ = 0.1. We choose the kernal density
to be a standard normal density, and we experiment with several values of
h, and its asymptotically bias corrections counterparts.

These results can be seen in Tables 5 and 6 for the seven proposed
designs.

We can see that for designs where there were no fixed effects in the selec-
tion equation (Designs 1, 3 and 6) all proposed estimators present essentially
no bias. The exceptions are given by (i) the estimates of the coefficient of the
inverse Mills-ratio (which true value is essentially the correlation between
the errors in the equations) in the Hybrid approach, and (ii) the estimates
of β12 given by the Kyriazidou and Kyriazidou(corrected) estimators for
h = 10. The latter is expected, since, as argued by Kyriazidou (1997), the
bias of the estimates increases when the chosen bandwidth is increased.

The fact that such estimates are mostly unbiased for all proposed estima-
tors also points out that even when fixed effects in the observation equation
are present (as in Designs 3 and 6), the methods that rely on including
dummy variables for them, namely, Heckman and Hybrid, deliver estimates
with nice properties. Moreover, in this case, Kyriazidou, which relies on
differencing out those fixed effects together with the sample selection effects
also performs well. However, notice that the precision of the Hybrid and
Kyriazidou approaches are slightly lower than the Heckman approach.

When fixed effects in the selection equation are included (Designs 2, 4,
5, 7), the Heckman and Heckman (PP) estimators present biases, which is
aligned with Theorem 1. Since the single indices are biased in such cases, the
estimates of the observation equation are likely to be also biased. Such biases
are more pronounced for the coefficient of the binary variable x2. Also, for
this variable, the biases are not always in the same direction. However, it is
striking that when comparing both estimators, the Heckman (PP) delivers
even more biased estimates.

We note that for such designs, the Hybrid approach reduces the biases
in general, specially for the coefficient of the binary variable. However, for
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Heckman
β11 0.0002

(0.0482)
0.0092
(0.0466)

0.0014
(0.0527)

0.0204
(0.0516)

0.0160
(0.0343)

0.0025
(0.0536)

0.0161
(0.0573)

β12 -0.0004
(0.0628)

-0.0257
(0.0612)

0.0018
(0.0957)

0.0288
(0.1063)

-0.0398
(0.0687)

-0.0025
(0.1005)

0.0204
(0.1114)

Inverse Mills-Ratio 0.0038
(0.1203)

0.0613
(0.1268)

0.0037
(0.1659)

0.1317
(0.1732)

0.0606
(0.1387)

0.0043
(0.1754)

0.1310
(0.1877)

Heckman Perfect Prediction
β11 0.0174

(0.0531)
0.0291
(0.0628)

0.0427
(0.0399)

0.0246
(0.0645)

β12 -0.0495
(0.08513)

0.0426
(0.1131)

-0.0676
(0.0871)

0.0418
(0.1218)

Inverse Mills-Ratio -0.0997
(5.1842)

0.1318
(2.7994)

0.1016
(1.9824)

0.4240
(4.0759)

Hybrid
β11 -0.0049

(0.0587)
0.0109
(0.0764)

0.0001
(0.0705)

0.0128
(0.0766)

0.0119
(0.0925)

0.0035
(0.0787)

0.0136
(0.0987)

β12 0.0001
(0.0854)

0.0183
(0.1381)

0.0038
(0.1304)

-0.0044
(0.1475)

0.0150
(0.1601)

0.0048
(0.1372)

-0.0051
(0.1743)

Inverse Mills-Ratio 0.0050
(0.1332)

0.0887
(0.2597)

0.0189
(0.2644)

0.0716
(0.2695)

0.0968
(0.3198)

0.0288
(0.2742)

0.0781
(0.3329)

Kyriazidou h = 0.5
β11 -0.0093

(0.0820)
-0.0065
(0.0891)

-0.0071
(0.0811)

-0.0059
(0.0840)

-0.0058
(0.0941)

-0.0056
(0.0870)

-0.0052
(0.0903)

β12 -0.0063
(0.1421)

-0.0022
(0.1465)

-0.0026
(0.1412)

-0.0072
(0.1494)

0.0044
(0.1657)

0.0031
(0.1557)

-0.0224
(0.1633)

Kyriazidou h = 0.5, corrected
β11 -0.0093

(0.0823)
-0.0066
(0.0894)

-0.0071
(0.0814)

-0.0059
(0.0843)

-0.0058
(0.0944)

-0.0056
(0.0873)

-0.0053
(0.0907)

β12 -0.0064
(0.1425)

-0.0022
(0.1471)

-0.0026
(0.1418)

-0.0071
(0.1499)

0.0044
(0.1664)

0.0030
(0.1563)

-0.0225
(0.1640)

Kyriazidou h = 1
β11 -0.0081

(0.0736)
-0.0055
(0.0803)

-0.0069
(0.0729)

-0.0059
(0.0746)

-0.0057
(0.0862)

-0.0057
(0.0790)

-0.0040
(0.0809)

β12 -0.0039
(0.1290)

-0.0012
(0.1327)

-0.0017
(0.1264)

-0.0101
(0.1337)

0.0034
(0.1461)

0.0019
(0.1391)

-0.0195
(0.1445)

Kyriazidou h = 1, corrected
β11 -0.0082

(0.0738)
-0.0056
(0.0805)

-0.0071
(0.0731)

-0.0060
(0.0748)

-0.0058
(0.0864)

-0.0058
(0.0792)

-0.0041
(0.0812)

β12 -0.0041
(0.1294)

-0.0013
(0.1331)

-0.0018
(0.1267)

-0.0102
(0.1341)

0.0033
(0.1465)

0.0017
(0.1395)

-0.0197
(0.1449)

Table 5: Simulation results for the estimated coefficients for the observation Equation 47 with N = 25
and 500 iterations. The values correspond to the mean bias of estimates, and the standard deviation is in
parenthesis. The estimator Heckman Perfect Prediction is only obtained for designs with fixed effects in the
selection equation.
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Kyriazidou h = 2
β11 -0.0070

(0.0692)
-0.0045
(0.0751)

-0.0063
(0.0690)

-0.0044
(0.0701)

-0.0045
(0.0812)

-0.0051
(0.0735)

-0.0035
(0.0750)

β12 -0.0017
(0.1210)

0.0000
(0.1240)

-0.0021
(0.1175)

-0.0135
(0.1253)

0.0039
(0.1371)

0.0030
(0.1287)

-0.0175
(0.1346)

Kyriazidou h = 2, corrected
β11 -0.0073

(0.0694)
-0.0049
(0.0753)

-0.0066
(0.0692)

-0.0048
(0.0703)

-0.0048
(0.0814)

-0.0055
(0.0737)

-0.0037
(0.0753)

β12 -0.0022
(0.1213)

0.0001
(0.1243)

-0.0026
(0.1177)

-0.0138
(0.1256)

0.0035
(0.1374)

0.0026
(0.1290)

-0.0178
(0.1349)

Kyriazidou h = 3
β11 -0.0064

(0.0678)
-0.0037
(0.0731)

-0.0059
(0.0676)

-0.0032
(0.0682)

-0.0037
(0.0791)

-0.0043
(0.0710)

-0.0028
(0.0722)

β12 0.0000
(0.1178)

0.0000
(0.1205)

-0.0020
(0.1142)

-0.0142
(0.1218)

0.0048
(0.1331)

0.0043
(0.1246)

-0.0157
(0.1302)

Kyriazidou h = 3, corrected
β11 -0.0069

(0.0680)
-0.0042
(0.0734)

-0.0065
(0.0678)

-0.0037
(0.0684)

-0.0041
(0.0794)

-0.0048
(0.0713)

-0.0032
(0.0724)

β12 -0.0001
(0.1181)

-0.0010
(0.1208)

-0.0028
(0.1145)

-0.0148
(0.1221)

0.0043
(0.1334)

0.0037
(0.1249)

-0.0162
(0.1305)

Kyriazidou h = 5
β11 -0.0044

(0.0658)
-0.0013
(0.0711)

-0.0039
(0.0656)

-0.0001
(0.0663)

-0.0020
(0.0768)

-0.0023
(0.0683)

-0.0014
(0.0693)

β12 0.0033
(0.1142)

0.0010
(0.1167)

0.0000
(0.1115)

-0.0130
(0.1186)

0.0071
(0.1286)

0.0066
(0.1204)

-0.0124
(0.1262)

Kyriazidou h = 5, corrected
β11 -0.0052

(0.0661)
-0.0019
(0.0713)

-0.0047
(0.0659)

-0.0016
(0.0666)

-0.0025
(0.0771)

-0.0030
(0.0685)

-0.0019
(0.0695)

β12 0.0023
(0.1146)

0.0000
(0.1171)

-0.0011
(0.1118)

-0.0138
(0.1189)

0.0064
(0.1289)

0.0057
(0.1208)

-0.0130
(0.1266)

Kyriazidou h = 10
β11 0.0045

(0.0614)
0.0073
(0.0668)

0.0056
(0.0617)

0.0074
(0.0630)

0.0043
(0.0722)

0.0062
(0.0637)

0.0045
(0.0656)

β12 0.0153
(0.1089)

0.0113
(0.1116)

0.0108
(0.1071)

-0.0039
(0.1141)

0.0156
(0.1226)

0.0168
(0.1144)

-0.0046
(0.1210)

Kyriazidou h = 10, corrected
β11 0.0036

(0.0616)
0.0066
(0.0670)

0.0047
(0.0619)

0.0067
(0.0632)

0.0038
(0.0725)

0.0054
(0.0640)

0.0040
(0.0658)

β12 0.0142
(0.1092)

0.0104
(0.1119)

0.0097
(0.1074)

-0.0048
(0.1144)

0.0150
(0.1229)

0.0158
(0.1147)

-0.0052
(0.1213)

Table 6: Simulation results for the estimated coefficients for the observation Equation 47 with N = 25
and 500 iterations. The values correspond to the mean bias of estimates, and the standard deviation is in
parenthesis. 57



Designs 2, 4 and 5, the Kyriazidou and Kyriazidou(corrected) estimators
reduces the biases even further, specially for the initial choice of h ranging
between 0.5 and 5. Moreover, looking at the standard deviations, in general,
the Kyriazidou estimators reduce the bias while not sacrificing precision.

The exception to this observation is in Design 7. For this design we have
that, while Kyriazidou estimators reduce further the biases in the coefficients
of the continuous regressor x1, the Hybrid approach does a better job for the
binary variable x2. For the coefficients of this variable the Kyriazidou esti-
mators only reduces the biases observed in the Heckman estimator for h > 2.
Then, the bias is basically eliminated only for h = 10. This contradicts the
argument of Kyriazidou (1997) that the bias of the estimates increases when
the chosen bandwidth is increased. Also, it points out that the estimates
are sensitive to the choice of the initial h.However, note that the Kyriazidou
estimators always reduces the biases when compared to the Heckman (PP)
estimator, for all the designs and all the initially chosen values of h.

In appendix B.1 the estimates for all designs and approaches are given
such that the parameters of the first stage estimation are set to their true
value (for the Hybrid approach it boils down to only applying Lee’s trans-
formation on the variables). We note that in this case, the Kyriazidou esti-
mators delivers unbiased estimates for all designs (except for the case when
h = 2). Therefore, there is evidence that such remaining biases might come
from the estimators of the first stage. We saw previously that the biases in
the first stage Charbonneau estimates still did not vanish due to the reduced
sample size. This indicates that possibly the remaining biases seen here are
not originated by the Kyriazidou estimator itself. An intriguing fact is that
the Hybrid estimator in this case presents some bias for the estimate of β12.

Moreover, from the tables we can see that the estimators provided by
Kyriazidou(corrected) do not reduce biases further compared to Kyriazi-
dou. Even though that is contractory to Corollary 1, the same is observed
in the simulations provided in Kyriazidou (1997). There are two possible
explanations for this: (i) the small sample bias is more important than the
asymptotic bias for these designs, or (ii) other methods for choosing an
appropriate bandwith given an initial chosen h should be provided.

In Figures 15 - 17, we provide the QQ-plots for the estimates obtained by
the different approaches for the parameter β11. While it is expected that the
estimates of the Hybrid and the Kyriazidou approaches are approximatelly
normal, it is striking that the estimates of the Heckman methods are also
approximately normally distributed, since the distribution of single indexes
for these approaches deviates from a normal distribution. The same is ob-
served for the estimates of the parameter β12, which plots are presented in
Appendix B.1.
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Figure 15: QQ plot of estimated β11 in Design 5

Figure 16: QQ plot of estimated β11 in Design 6
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Figure 17: QQ plot of estimated β11 in Design 7

11 An application to the gravity model for inter-
national trade

In this section we apply the proposed methods for estimating gravity models
to international trade flows. We aim to estimate how trade barriers affect
both the decision of country i to export to country j, and the volume of
trade. We will estimate the model outlined in Section 3, with the only
difference being that we do not include wij as a regressor in the second stage
estimation. This variable accounts for the fraction of firms that export from
country i to country j in country i, being related to the extensive margins of
trade. When this variable is omitted, the estimation confounds the effects of
trade barriers on the intensity of trade (intensive margin) with the effects on
the proportion of exporting firms (extensive margin). The sample selection
effect is introduced in this model when only countries with positive trade
flows are taken into account in the observation equation.

Therefore, while the estimation proposed by Helpman et al. (2008) cor-
rects both for the effect of this variable wij and the sample selection effect
in the observation equation, we will focus here on the latter effect.

The reason to not take into account wij for now is that this is an esti-
mated variable, that is obtained through the estimated inverse Mills-ratio.
As demonstrated in Helpman et al. (2008), it introduces a further non-
linearity in the observation equation. This non-linearity needs to be taken
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into account by employing a non-linear least squares (NLS) estimator when
applying the standard Heckman approach. Therefore, for simplicity, and
to clearly explore the differences between our proposed estimators and the
standard Heckman procedure, we will focus only on correcting for the sample
selection bias.

We use the dataset provided by Helpman et al. (2008), which is the same
used by Charbonneau (2017) in her application to estimate the parameters
for the first stage estimation, that refers to the decision of countries to trade
(the probability that country i exports to country j). Therefore, we can
compare our results in the first stage estimation with both results obtained
by Helpman et al. (2008) and Charbonneau (2017), determining if we have
a successfull replication of their studies.

The dataset provides information on directed trade flows and country
characteristics for 158 countries in 1986. The country characteristics boil
down to attributes on the country pairs (dyads). The variables used are, as
described by Helpman et al. (2008):

• Distanceij : the distance (km) between the exporter’s i and importer’s
j capitals in logs.

• Common Border ij : a binary variable that equals one if the exporter i
and importer j share borders (are neighbors).

• Colonial ties ij : a binary variable that equals one if importing country
j ever colonized in the history the exporting country i or vice versa,
and zero otherwise.

• Currency Unionij : a binary variable that equals one if the exporter i
and the importer j have a common currency or if their own currencies
had a 1:1 exchange rate for an extended period of time, and zero
otherwise.

• Common Legal systemij : a binary variable that equals one if the ex-
porting country i and importing country j have the same legal origin,
and zero otherwise.

• Common Religionij : (% Protestants in country i. % Protestants in
country j ) +(% Catholics in country i · % Catholics in country j )
+(% Muslims in country i. % Muslims in country j ).

• FTAij : a binary variable that equals one if the exporter i and the
importer j belong to a common regional trade agreement, and zero
otherwise.

In our estimation of the first stage equation we disconsider the obser-
vations with Congo as an exporter, as for those, the decision of trade does
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not change (Congo never exports to any country). This is done to avoid the
problem of perfect predictability.

Both Helpman et al. (2008) and Charbonneau (2017) take into account
variables related to whether both countries are islands or if both do not have
direct access to the sea. However, when we implement the Charbonneau ap-
proach in this application, such transformed variables lack of variation for
the identification of the parameters. For obtaining the coefficients, we apply
a standard logit estimation to the transformed variable (note that the stan-
dard errors have a more involved estimation, obtained as Jochmans (2018)
proposes). The reason why Charbonneau (2017) is able to incorporate such
variables might come from two sources: (i) instead of applying a standard
logit, the author maximizes numerically the Equation (32), or (ii) the author
takes into account the observations with Congo as exporter. However, this
is not a crucial issue, once other studies also disregarded such variables (for
instance, Jochmans (2018)).

For more details on the construction of the variables in the dataset, refer
to Appendix I in Helpman et al. (2008).

We estimate the parameters β∗2 of the following equation in the first stage
(selection equation):

y2,ij = 1(x′2,ijβ
∗
2 + ξ∗i + ζ∗j > η∗ij) (50)

where: (i) y2,ij is a binary variable, being one if the i exports to j and zero
otherwise, (ii) ξ∗i is the exporter fixed effect, (iii) ζ∗j is the importer fixed
effect, (iv) x2,ij is the vector that collects the variables Distanceij , Com-
mon Border ij , Colonial Ties ij , Currency Unionij , Common Legal Systemij ,
FTAij , Common Religionij .

The following is the specified model for the second stage (observation
equation):

y1,ij,t = x′1,ij,tβ1 + ϑi + χj + uij,t (51)

where: (i) y1,ij is the log of the value of the exports from i to j, (ii) ϑi
is the exporter fixed effect, (iii) χj is the importer fixed effect, (iii) x1,ij,t

is the vector that collects the same variables as x2,ij , with the exception of
Common Religionij which is taken into account only in the first estimates of
the standard Heckman approach as we will explain later. We only use dyads
with positive exports to estimate this second stage equation. Therefore, a
sample selection correction must be employed.

11.1 Estimation of selection equation (decision to trade)

We estimate the selection equation using a standard Probit with dummies for
the fixed effects (which here boils down to the Probit (PP) in our simulations,
as we excluded Congo as an exporter) and the Charbonneau estimator. The
results can be seen in Table 7.
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Probit Charbonneau
Common language 0.2903∗∗∗

(0.0379)
0.4248∗∗∗

(0.0732)
Common legal system 0.0972∗∗

(0.0296)
0.1822∗∗∗

(0.0597)
Common Religion 0.2647∗∗∗

(0.0585)
0.4979∗∗∗

(0.1125)
Common Border −0.3798∗∗∗

(0.0946)
−0.5164∗∗

(0.2300)
Currency Union 0.4883∗∗∗

(0.1306)
1.0459∗∗∗

(0.2362)
Distance −0.6626∗∗∗

(0.0208)
−1.0001∗∗∗

(0.0541)
FTA 2.0170∗∗∗

(0.3085)
3.5565∗∗∗

(0.5237)
Colonial Ties 0.3337

(0.2852)
1.1432∗

(0.6473)

Table 7: Estimates for the first stage Equation 50. For the Probit estimates we consider
importer and exporter fixed effects, correcting for the perfect prediction problem. Stan-
dard errors are in parenthesis.
* indicates that the coefficient is significant at the 10 % level
** indicates that the coefficient is significant at the 5 % level
*** indicates that the coefficient is significant at the 1 % level.

Even though we do not take into account two variables considered by
Charbonneau (2017), our estimates for the remaining parameters are re-
markably similar for both estimators and for all remaining coefficients, when
comparing to the results she presents in her paper.

We can see that our Charbonneau estimates have a higher magnitude
for all the coefficients when compared to our Probit estimates. Thus, the
proposed correction for the asymptotic biases in the standard Probit model
plays a practical role in this application.

All the estimates also have the same sign as the ones obtained by Help-
man et al. (2008) (where the Probit estimator is applied in the first stage).
As expected, geographic distance decreases the probability of countries to
trade, while the coefficients for the other characteristics that reflect how
similar countries i and j are in general positive (Common Language, Com-
mon Religion, Colonial Ties, Currency Union, Common Legal System), in-
dicating that there is homophily in how trade networks are formed (similar
countries have a higher propensity to trade). Countries that belong to a
common regional trade agreement also have a higher probability of trading,
as expected.

The estimates for both methods point out that countries with a common
border are likely to trade less. As explained by Helpman et al. (2008), this
negative effect might be due to territorial border conflicts that harms trade
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between countries that are neighbors.
For the Charbonneau method, we estimate the standard errors as pro-

posed by Jochmans (2018). Even though Charbonneau (2017) does not
clearly state how the estimates of the standard errors are obtained in her
paper, when comparing, we find that our estimates are similar to hers. The
exceptions are only for the variables Colonial Ties and FTA. In terms of
significance levels, the variable FTA is significant at the 1% level both in
our application and in hers, while the variable Colonial Ties is not signif-
icant even at the 10% level in her application and here it is significant at
this level.

When comparing our Charbonneau estimates to our Probit estimates,
the levels of significance of the variables are also very similar, with the excep-
tions of (i) Common legal system, which in these estimations it is significant
at the 5% level, while in our Charbonneau estimation is significant at the 1%
level; and (ii) Colonial Ties, which is not significant even at the 10% level in
the Probit estimations, but it is significant at this level for the Charbonneau
estimator, as mentioned before.

11.2 Estimation of observation equation (directed trade flows)

Once the estimates of the first stage are obtained, we follow to the estimation
of the second stage, which measures the effects of these variables on the
volumes of exports from country i to j.

We apply the same methods outlined in Section 10. Namely, given the
Probit estimates we employ the standard Heckman approach, and given the
Charbonneau estimates, we employ the Hybrid and modified Kyriazidou
approaches (with and without the asymptotic corrections). All the methods
propose to correct for sample selectivity, and thus, allow for correlation
between the errors of Equations (50) and (51).

For the modified Kyriazidou approach, we follow the parameters chosen
in Section 10, setting r = 1, δ = 0.1, and experimenting throughout a range
of possible values of the initial bandwidth h. Moreover, this approach re-
quires a variable that satisfies an exclusion restriction in the sense that it
affects the decisions to trade (affects the fixed costs of trading), but it does
not affect the volume of trade flows (does not affect the variable costs). We
follow Helpman et al. (2008) and use Common Religion as such variable.
That Common Religion affects the decision of trade is clear from the esti-
mates of the first stage. For the second requirement, the authors argue that
when including variables related to regulation costs of firm entry, the coeffi-
cient of the variable Common Religion becomes not significant in the second
stage. Note that variables related to regulation costs satisfy the exclusion
restriction, since by construction they do not affect the variable costs.

In this study, we deliberately chose not to include the variables that
refer to the regulation costs, since they reduce the sample size drastically.
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In our case, this is aggravated since both the Charbonneau and the modified
Kyriazidou estimators already reduce the amount of information used from
the dataset due to all the conditions that must be met on quadruples.

However, as it is evident on the results presented in Table 8, the variable
Common Religion does not completely satisfy the conditions of exclusion
restriction, since its coefficient in the estimates of the standard Heckman
approach is still significant at the 5% level. Thus, one should be careful
when looking at the estimates of the modified Kyriazidou approach. We
could not verify the significance level in the new proposed approaches since
the estimates of the standard errors are still not available.

From Tables 8 and 9, we can see that regardless of the employed method,
all coefficients except for Distance are positive. In the case of the variable
Common Border this means that, while being neighbors reduces the proba-
bility of trading, when trade is made, being neighbors increases the volume
of trade.

The estimates obtained with the Hybrid and the modified Kyriazidou
approach are different from the ones obtained with the standard Heckman
approach. Thus, there is evidence that the latter is biased. However, we
should point out that in order to properly claim that there are biases in
the estimates, we would need to test whether the estimated coefficients are
significantly different. As we still do not have estimates for the standard
errors in the proposed approaches, this test cannot be done.

Moreover, while for some variables these possible biases have a clear di-
rection when looking at the estimates provided by the two proposed meth-
ods, for others it does not have.

The coefficient of Common Border is higher for all estimates obtained
from the Hybrid and the Kyriazidou approach. For the FTA variable, the
same holds, except for the estimator obtained with the Kyriazidou approach
when setting the initial h to be ten. Finally, for Currency Union the coeffi-
cients are also higher for the Hybrid approach and for the Kyriazidou with
higher levels of the initial h. For the remaining variables, the two proposed
methods would imply various directions for the bias.

As in the results obtained in the simulation exercise, the asymptotic
correction for the estimates of the modified Kyriazidou approach does not
deliver different estimates compared to the initial estimation. Finally, it
is evidenced in this application that the estimates for this approach are
sensitive to the initial chosen level of h.

12 Conclusion

In this study we showed that accounting for sample selection bias in dyadic
data settings is not straightforward and requires more involved methods
than the standard Helpman et al. (2008) two-step approach. The standard
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Heckman approach involves a first stage where the probability of observing
an outcome is estimated through a probit model with dummys for fixed
effects, and a second stage that estimates the effects of different variables
on such outcome, taking into account the estimated probabilities in the first
stage.

The motivation to study dyadic interactions came from the gravity mod-
els for international flows. We specifically consider the model proposed by
Helpman et al. (2008), since it explicitly takes into account how the sam-
ple selectivity arises when estimating how trade barriers affect trade flows,
when considering in the estimation only countries with positive trade flows.
Another key aspect in this model is the presence of multilateral resistance
terms, that boils down to the inclusion of two-way fixed effects for both
countries involved in the trade.

Even though the motivation emerged from the trade literature, the ap-
proaches outlined in this study can be applied to any dyadic interaction
where sample selectivity might be present (given that the model satisfies
the outlined assumptions throughout the study). More generally, the first
stage estimations, which outline the probability of observing a pairwise in-
teraction that generates an outcome (in the case above, the probability of
trading with each other), can be seen as an estimation of a network forma-
tion model, as highlighted in Jochmans (2018). The presence of the two-way
fixed effects also indicates a close relationship to the β-models in the net-
works literature.

The difficulty in correcting for sample selectivity in such models arises
as the two-way fixed effects are incorporated in the first stage estimation.
These effects leads to the incidental parameter problem (Neyman and Scott
(1948)), and the estimates of structural parameters obtained through the
standard Probit are asymptotically biased (Fernández-Val and Weidner (2016)).

We showed more formally how this problem arises, and proposed the
conditional logit estimates of Charbonneau (2017) to estimate the structural
parameters of the first stage equation. Such method relies on a clever way of
differencing out both fixed effects in the equation over quadruples of dyads.
The downside of this method is that it evidently does not provide estimates
of the fixed effects, and therefore, the estimation of the inverse Mills-ratio
for the traditional Heckman approach are not readily available.

To bypass this problem, we proposed two approaches based on existing
methods, but providing the suitable modifications to this setting of dyadic
regressions. The first method, denoted by Hybrid, relies on retrieving the
estimates of the fixed effects through the unconditional log-likelihood, re-
stricting the structural parameters to be the same as the estimates obtained
by the Charbonneau estimates. Once the fixed effects estimates are col-
lected, it is possible to transform the variables, as proposed by Lee (1983)
such that the Heckman two-step approach can be employed even when the
errors in the selection equation are logistically distributed. The advantages
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of this approach is that there is no need for a variable that satisfies an exclu-
sion restriction, since the sample selection effects have a defined functional
form in the observation equation, guaranteeing the identification of its struc-
tural parameters. The downsides of this method are that (i) one still needs
to obtain estimates for the fixed effects in the first stage equation, pointing
out that this approach may not be suitable for sparse networks, and that
(ii) the distribution of the errors need to be specified.

The second method is based on Kyriazidou (1997), and involves differ-
encing the second stage equation over quadruples of dyads. The form of
differencing guarantees that the fixed effects in the second stage equation
are completely differenced out, however it does not guarantee that the sam-
ple selectivity effects are completely differenced out as well. To overcome
this problem, the main idea is then that weights are applied to the trans-
formed observations such that a higher weight is attributed to quadruples
for which the differences in the sample selectivity effects are smaller. Such
differences in sample selectivity effects take into account the estimates pro-
vided by Charbonneau of the first stage. The benefits of this method is that
there is no need to estimate any of the fixed effects in both equations, and
to specify the distribution of the errors in the observation equation. The de-
ficiencies of this approach are that the estimates are sensitive to the choices
of bandwidths h, as shown in the application and in the Monte Carlo simu-
lations. Also, the proposed method to choose an optimal bandwidth seems
to not show improvements. One aspect of both methods is that they are
computationally costly, since they boil down to combinatoric problems over
quadruples of dyads that must satisfy some given restrictions.

Our Monte Carlo simulation exercise confirms the theoretical predictions
that under the normality assumption of both error terms, the estimators of
the first stage equation given by the Probit model with fixed effects are
biased. On top of that, such biases are carried over to the estimations of
the second stage equation, given by the standard Heckman approach. The
exercise also demonstrates that,as predicted by the theory, the proposed
methods (under their respective assumptions) deliver reductions in the bi-
ases the estimators of both equations.

However, we must point out that in our empirical application to the
gravity model for international trade flows, it is not straightforward to draw
conclusions from the obtained estimates from the different approaches for
some variables. One of the potential sources for this limitation is that the
method based on Kyriazidou (1997) requires a variable that satisfies an
exclusion restriction. In our application it seems to be the case that the
proposed variable does not satisfy the requirement that it should not affect
the outcome of the second stage equation.

Finally, further research topics related to this study are: (i) obtaining
the asymptotic properties of both proposed estimators, (ii) allow for a set-
ting with several time periods, (iii) investigate whether a better method for
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choosing the bandwidth h in the second approach can be obtained and (iv)
study the possibility of extending the methods such that it is possible to be
employed in networks where transitivy is present (which involves relaxing
assumptions related to errors being i.i.d.).
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A Appendix: Derivations

A.1 Derivation of Helpman et al. (2008) gravity equation

In this subsection we follow the derivations of Helpman et al. (2008) for
their gravity model. We consider a model with an economy comprising I
countries, indexed by i = 1, 2, ..., I. All countries consume and produce a
continuum of products.

Country i’s utility function is given by:

ui =

[∫
l∈Bi

xi(l)
αdl

]1/α

, 0 < α < 1 (52)

where xi(l) is its consumption of product i, Bi is the set of products available
for consumption in country i and α determines the elasticity of substitution
across products, given by σ = 1

1−α . Denoting Yi the income of country i,
which equals its expenditure levels, we can write country i’s demand for
product l as:

xi(l) =
p̆i(l)

−σYi

P 1−σ
i

(53)

Where p̆i(l) is the price of product l in country i, and Pi is the country’s
price index, given by:

Pi =

[∫
l∈Bi

p̌i(l)
1−σdl

]1/(1−σ)

(54)

Note here that σ is not only constant across countries, but also across prod-
ucts. Some of the products in Bi are domestically produced while others are
imported. Remembering that a given country i has a measure of Ni firms,
and that the products are differentiated by the origin country, we have that
there are

∑I
i Ni products in the economy.

As mentioned in Section 2, the firms of country i produces one unit
of output with a combination of inputs given by cia that minimizes costs,
where a is firm-specific and denotes the number of bundles of inputs used
per output, and ci is a country-specific cost of the bundle. Moreover, 1/a
reflects the productivity of a firm, and a follows a cumulative distribution
function G(a) with support [aL, aH ]. The functional form of this distribution
is the same across countries.

When a firm sells a product in the home market it bears only the pro-
duction costs, but if the firm sells its product in country j, there are two
additional costs: the fixed cost of serving j, and a transport (variable) cost
that takes the form of a ”melting iceberg” cost, as mentioned in Section 2.

By assuming monopolistic competition in the final goods, and given that
every single firm has a measure zero, the demand function implies that a
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firm from country i maximizes its profits by charging the mill-price, which
is a standard mark-up pricing equation:

p̆i(l) = τij
cia

α
(55)

If this firm sells to consumers in country j, then it sets a delivered price
equal to it. As a result, by combining the demand function, the prices and
the associated costs, we have that the profits that a firm in country i obtains
by exporting to country j is given by:

πij(a) = (1− α)

(
τijcia

αPj

)1−σ
Yj − cifij (56)

For a firm in country i, exporting to a country j is only profitable for
a ≤ aij , where aij can be defined by πij(aij) = 0, or:

(1− α)

(
τijciaij
αPj

)1−σ
Yj = cifij (57)

Which is equation 1. Therefore, this equation determines the fraction of
firms in country i that will export to country j, given by G(aij), which, as
highlighted before, can be zero. Therefore, the set Bj of products available
in country j will be smaller than the set of products in the economy.

Then, the bilateral trade volumes is given by:

Vij =

{ ∫ aij
aL

a1−σdG(a) for aij ≥ aL
0 otherwise

(58)

Note that this equation is almost simply obtaining the fraction of firms
exporting to country j. The difference is the term 1−σ, which was included
just to simplify the remaining derivations of the model.

From the demand function, the pricing equation and by taking into ac-
count that country i has a measure of Ni firms, we have that the value of
country i’s exports to country j is:

Y1,ij =

(
ciτij
αPj

)1−σ
YjNiVij (59)

It is clear that this bilateral trade volume is equal to zero if aij ≤ aL,
since in this case Vij = 0. Moreover, using the equation of the price indices,
Equation (54), and the definition of Vij , we finally obtain the last equation
that characterizes the model:
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P 1−σ
j =

I∑
i=1

(ciτij
α

)1−σ
NiVij (60)

Equations (57)-(60) show that the bilateral trade flows Y1,ij can be ob-
tained from the income levels Yj , the number of firms Ni, the unit costs ci,
the fixed costs fij and the variable costs τij .

We now show that under the assumptions that the variable costs are
symmetric (τij = τji) and that Vij can be multiplicatively decomposed as
a deterministic function of three components (one that depends only on
the exporter, one that depends only on the importer and one that depends
on country-pair characteristics that are symmetric for every country-pair),
we can obtain the gravity model detailed in Anderson and Van Wincoop
(2003). This indicates that the model presented here is a generalization of
the traditional gravity model, where such assumptions were relaxed.

First, we use the equality of income and expenditures of country i, given
by Yi =

∑J
j=1 Y1,ij (note that this summation also takes into account the

sales to home residents, Y1,ii). Then, we can use Equation (59) to write Yi
as:

Yi =
(ci
α

)1−σ
Ni

∑
h

(
τih
Ph

)1−σ
YhVih (61)

We can obtain an analogous expression for Yj , and substitute in Equation
(59) to obtain:

Y1,ij =
YiYj
Y W

(
τij
Pj

)1−σ
Vij∑J

h=1

(
τih
Ph

)1−σ
Vihsh

(62)

where Y W =
∑J

j=1 Yj is the world income and sh = Yh/Y
W is the share of

country h in the world income.
We now assume the following:

Assumption 17. The following restrictions should hold:
(i) The variable costs are symmetric τij = τji.
(ii) Vij is decomposable as follows

Vij = (ϕIM,jϕEX,iϕij)
1−σ

where ϕIM,i depends only on the parameters of the importing country, ϕEX,j
depends only on the parameters of the exporting country, and ϕij = ϕji ∀i, j.
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We can then use Equation (62) to obtain:

Y1,ij

Y W
= sisj

(
τijϕij
QiQj

)1−σ
(63)

Where Qj = Pj/ϕIM,j , and the values of Qi are solved from:

Q1−σ
i =

∑
h

(
τihϕih
Qh

)1−σ
sh (64)

Which is implied by Equations (4) and (61). Therefore, we can see that
Equations (63) and (64) are essentially the system of equations derived by
Anderson and Van Wincoop (2003). Note that in this case, the heteroge-
neous productivity of firms do not play a role in the volume of trade flows,
and neither the sample selection problem is explicitly stated in the equation.

A.2 Helpman et al. (2008) estimation equations

A.2.1 Definitions of latent variable Y ∗2,ij,t and Wij,t

We define the latent variable Y ∗2,ij,t as:

Y ∗2,ij,t =
(1− α)

(
Pj

α
ciτij

)σ−1
Yja

1−σ
L

cifij
(65)

Which represents the ratio of variable export profits for the most pro-
ductive firm (with productivity 1/aL) to the fixed export costs (common to
all exporters) for exports from i to j. Then, in this case, positive exports are
observed if Y ∗2,ij,t ≥ 1, and one can verify that Wij is a monotonic function

of Y ∗2,ij,t in the case of positive exports: Wij = Y ∗2,ij,t
(k−σ+1)/(σ−1) − 1.

To see this last equality, by isolating aij from equation 1, we have that:

aij =
(1− α
cifij

Yj

)1/σ−1(τijci
αPj

) 1−σ
σ−1

(66)

In case of positive exports, we have that:

Wij =
(aij
aL

)k−σ+1
− 1 (67)

Then, by substituting Equation (66) in this later expression, we find that
Wij = Y ∗2,ij,t

(k−σ+1)/(σ−1) − 1.
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A.2.2 Sample selection as an omitted variable bias

Now, following Heckman (1979), we can formulate how the sample selection
bias arises in this framework for the gravity model. Recording the form of
the equation for trade flows (5), if we consider the its population regression
function, we can write:

E[y1,ij,t|x1,ij,t, ϑi, χj , wij ] = x′1,ij,tβ1 + ϑi + χj + wij (68)

However, the regression function for the subsample of the data that is
self-selected into trade is given by:

E[y1,ij,t|x1,ij,t, ϑi, χj , wij , sample selection rule] (69)

= x′1,ij,tβ1 + ϑi + χj + wij +E[uij |sample selection rule]

Therefore, the assumption that E[uij ] = 0 holds for the population, but
not necessarily for the subsample. Only if the conditional expectation of uij
is zero, then the assumption also holds for the subsample. However, we will
see that in our framework it does not hold. As we know, we observe trade
flows if and only if y2,ij,t

∗ > 0. Therefore, we have that:

E[uij |x1,ij,t, ϑi, χj , wij , sample selection rule] (70)

= E[uij |x1,ij,t, ϑi, χj , wij , y2,ij,t
∗ > 0]

Given equation 70, and the definition of y2,ij,t, we refine it down to:

E[uij |x1,ij,t, ϑi, χj , wij , sample selection rule] (71)

= E[uij |x1,ij,t, ϑi, χj , wij , ηij > −x′2,ij,tβ2 − ξi − ζj ]

This highlights the fact that in case of independence between uij and
ηij , data on xij is missing randomly, and the conditional mean of uij is zero.
However, this is not the case since they are correlated, as mentioned before.
Therefore, the subsample regression function translates to:

E[y1,ij,t|x1,ij,t, ϑi, χj , wij , y
∗
2,ij,t > 0] (72)

= x′1,ij,tβ1 + ϑi + χj + wij +E[uij |ηij > −x′2,ij,tβ2 − ξi − ζj ]

One can see that the sample selection function depends not only on
the variable trade costs, but also on the fixed trade costs. Therefore, the
regression estimators of the parameters of Equation (5) fitted on the selected
sample omit the final term of Equation (73) as a regressor. Thus, essentially,
the bias that results from using nonrandomly selected samples arise from a
problem of omitted variables.
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A.3 Sketch of the derivation of the asymptotic expansion

In this section we provide a more formalized version of the argument pro-
vided for the derivation of the asymptotic expansion given by Equation (27).
The basis for it is found in Remark 2 in Fernández-Val and Weidner (2016).

Taking a first-order Taylor expansion of the first order conditions of
Equation (25) around β∗2,0, gives:

0 =
∂L(β̂∗2 , ω̂

∗
NN (β∗2))

∂β∗2
≈
∂L(β∗2,0, ω̂

∗
NN (β∗2,0))

∂β∗2

− W̄∞
√
N(N − 1)T (β̂∗2 − β∗2,0) (73)

Then, we apply a second-order Taylor expansion to approximate the

above term
∂L(β∗2,0,ω̂

∗
NN (β∗2,0))

∂β∗2
around ω∗NN (β∗2,0), such that the estimates of

the fixed effects are taken into account.

∂L(β∗2,0, ω̂
∗
NN (β∗2,0))

∂β∗2
≈
∂L(β∗2,0, ω

∗
NN (β∗2,0))

∂β∗2
(74)

+
∂2L(β∗2,0, ω

∗
NN (β∗2,0))

∂β∗2∂ω′NN
[ω̂∗NN (β∗2,0)− ω∗NN (β∗2,0)]

+

dim ωNN∑
k=1

∂3L(β∗2,0, ω
∗
NN (β∗2,0))

∂β∗2∂ω′NN∂ωNN,k
[ω̂∗NN (β∗2,0)− ω∗NN (β∗2,0)][ω̂∗NN,k(β

∗
2,0)− ω∗NN,k(β∗2,0)]/2

Under regularity conditions, since the first term in this expression is the
score vector, it has mean zero and it generates the asymptotic variance. By
the information matrix equality and the Central Limit Theorem, we have:

∂L(β∗2,0, ω
∗
NN (β∗2,0))

∂β∗2

d−→ N(0, W̄∞) (75)

For some variance W̄∞. According Fernández-Val and Weidner (2016),
the second and the third term satisfies:

∂2L(β∗2,0, ω
∗
NN (β∗2,0))

∂β∗2∂ω′NN
[ω̂∗NN (β∗2,0)− ω∗NN (β∗2,0)]

+

dim ωNN∑
k=1

∂3L(β∗2,0, ω
∗
NN (β∗2,0))

∂β∗2∂ω′NN∂ωNN,k
[ω̂∗NN (β∗2,0)− ω∗NN (β∗2,0)][ω̂∗NN,k(β

∗
2,0)− ω∗NN,k(β∗2,0)]/2

≈
√
N(N − 1)T

( B̄β
∞

(N − 1)T
+

D̄β
∞

(N − 1)T

)
(76)

The analytical form of terms B̄β
∞ and D̄β

∞ can be obtained from the
second-order Taylor expansion as shown in Fernández-Val and Weidner (2016).
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However, as mentioned before, in this study we do not aim to do so. Those
terms originate from elements corresponding to the two-way fixed effects.

Plugging in the expression (76) into the equation for the first-order Tay-
lor expansion, we have, as N −→∞:

W̄∞
√
N(N − 1)T (β̂∗2 − β∗2,0) =

∂L(β∗2,0, ω
∗
NN (β∗2,0))

∂β∗2
+
B̄β
∞√
T

+
D̄β
∞√
T

(77)

By Slutsky Theorem, we have, given (75):

√
N(N − 1)T (β̂∗2 − β∗2,0)

d−→ W̄−1
∞ N

(B̄β
∞√
T

+
D̄β
∞√
T
, W̄∞

)
(78)

Therefore, compared to the expression given by (29) in Section 6, we
have that:

W̄−1
∞ B̄β

∞ = B̄∞

W̄−1
∞ D̄β

∞ = D̄∞

The main point of this sketch of the derivation is to show that the score
∂L(β∗2,0,ω̂

∗
NN (β∗2,0))

∂β∗2
is not centered around zero when β∗2 = β∗2,0, which origi-

nates the asymptotic biases. Moreover, the score not being centered around
zero comes from the introduction of the nuisance parameters, which converge
only at a slower rate compared to β∗2 .

A.4 A simple example for the perfect prediction problem

This Appendix outlines a simple example provided by Kunz et al. (2017)
that demonstrates the perfect prediction problem.

Consider a standard panel Probit model:

Pr(yit = 1|αi, xit) = Φ(αi + x′itβ)

(i = 1, ...N ; t = 1, ...T )

where yit ∈ {0, 1}, a binary variable, αi is an individual fixed effect, xit is a
vector of K explanatory variables, β ∈ RK is a vector of coefficients, and Φ
is the standard normal distribution function.

The log-likelihood is given by:

L(β) =
N∑
i=1

T∑
t=1

{yit ln Φ(αi + x′itβ) + (1− yit) ln(1− Φ(αi + x′itβ))}

We show that the first order conditions of this log-likelihood does not
have a finite solution if

∑T
t=1 yit = 0 or

∑T
t=1 yit = T for a given i. Thus,

the estimates of αi do not exist in those cases.
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The first order conditions are given by:

∂L
∂βk

=

N∑
i=1

T∑
t=1

(yit − Φ(αi + x′itβ))
φ(αi + x′itβ)

Φ(αi + x′itβ)(1− Φ(αi + x′itβ))
xk,it = 0

∀k = 1, ...K

∂L
∂αi

=

T∑
t=1

(yit − Φ(αi + x′itβ))
φ(αi + x′itβ)

Φ(αi + x′itβ)(1− Φ(αi + x′itβ))
= 0 (79)

∀i = 1, ...N

In the first case, suppose that
∑T

t=1 yit = 0 for some i. Then, from
Equation (79) it follows that:

−
T∑
t=1

φ(αi + x′itβ)

(1− Φ(αi + x′itβ))
= 0

From Section 5 we see that this is a summation over inverse Mills-ratios.
One of the properties of the inverse Mills ratio is that λit =

φ(αi+x
′
itβ)

(1−Φ(αi+x′itβ))
> 0

for a finite index αi + x′itβ. Then, this summation cannot be equal to zero,
and this equation does not have a solution.

In the second case, suppose that
∑T

t=1 yit = T , for some i. Then, from
Equation (79) it follows that:

−
T∑
t=1

φ(αi + x′itβ)

Φ(αi + x′itβ)
= 0

This summation also cannot be equal to zero from the properties of the
standard normal density function for a finite αi + x′itβ.

B Appendix: Aditional figures and tables for sim-
ulations

B.1 First stage estimates
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Figure 18: Histogram of the t-test for estimated β∗22 in Design 5

Figure 19: Histogram of the t-test for estimated β∗23 in Design 5

Figure 20: Histogram of the t-test for estimated β∗22 in Design 6

80



Figure 21: Histogram of the t-test for estimated β∗23 in Design 6

Figure 22: Histogram of the t-test for estimated β∗22 in Design 7

Figure 23: Histogram of the t-test for estimated β∗23 in Design 7
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Figure 24: QQ plot of estimated β∗22 in Design 5

Figure 25: QQ plot of estimated β∗23 in Design 5

Figure 26: QQ plot of estimated β∗22 in Design 6
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Figure 27: QQ plot of estimated β∗23 in Design 6

Figure 28: QQ plot of estimated β∗22 in Design 7

Figure 29: QQ plot of estimated β∗23 in Design 7
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B.2 Second stage estimates

Figure 30: QQ plot of estimated β12 in Design 5
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Hybrid
β11 -0.0052

(0.0569)
0.0000
(0.0747)

0.0001
(0.0672)

0.0014
(0.0750)

0.0014
(0.0893)

0.0033
(0.0745)

0.0001
(0.0963)

β12 0.0022
(0.0821)

0.0042
(0.1336)

0.0041
(0.1263)

-0.0188
(0.1426)

-0.0026
(0.1547)

0.0036
(0.1313)

-0.0194
(0.1680)

Inverse Mills-Ratio 0.0013
(0.1306)

0.0036
(0.2508)

0.0143
(0.2524)

-0.0112
(0.2738)

0.0155
(0.3001)

0.0212
(0.2627)

-0.0030
(0.2977)

Kyriazidou h = 0.5
β11 -0.0054

(0.0759)
0.0011
(0.0831)

-0.0060
(0.0779)

-0.0046
(0.0837)

0.0019
(0.0935)

-0.0018
(0.0837)

-0.0067
(0.0887)

β12 -0.0010
(0.1305)

-0.0032
(0.1401)

-0.0022
(0.1304)

-0.0082
(0.1431)

0.0075
(0.1587)

0.0056
(0.1391)

-0.0032
(0.1551)

Kyriazidou h = 0.5, corrected
β11 -0.0054

(0.0762)
0.0011
(0.0834)

-0.0060
(0.0782)

-0.0046
(0.0840)

0.0019
(0.0939)

-0.0018
(0.0840)

-0.0068
(0.0890)

β12 -0.0010
(0.1310)

-0.0033
(0.1407)

-0.0023
(0.1309)

-0.0082
(0.1437)

0.0074
(0.1593)

0.0056
(0.1396)

-0.0031
(0.1558)

Kyriazidou h = 1
β11 -0.0061

(0.0685)
0.0011
(0.0746)

-0.0057
(0.0697)

-0.0042
(0.0757)

0.0000
(0.0841)

-0.0029
(0.0743)

-0.0062
(0.0788)

β12 0.0001
(0.1161)

-0.0017
(0.1228)

-0.0013
(0.1162)

-0.0124
(0.1254)

0.0090
(0.1403)

0.0071
(0.1270)

-0.0083
(0.1361)

Kyriazidou h = 1, corrected
β11 -0.0062

(0.0687)
0.0010
(0.0748)

-0.0058
(0.0699)

-0.0043
(0.0759)

0.0000
(0.0843)

-0.0030
(0.0745)

-0.0064
(0.0791)

β12 0.0001
(0.1164)

-0.0018
(0.1231)

-0.0015
(0.1165)

-0.0125
(0.1257)

0.0090
(0.1407)

0.0070
(0.1273)

-0.0083
(0.1364)

Kyriazidou h = 2
β11 -0.0063

(0.0647)
0.0010
(0.0699)

-0.0048
(0.0641)

-0.0029
(0.0699)

-0.0012
(0.0785)

-0.0036
(0.0686)

-0.0050
(0.0726)

β12 0.0000
(0.1098)

0.0001
(0.1150)

0.0000
(0.1097)

-0.0145
(0.1172)

0.0084
(0.1324)

0.0064
(0.1207)

-0.0103
(0.1256)

Kyriazidou h = 2, corrected
β11 -0.0066

(0.0649)
0.0001
(0.0700)

-0.0052
(0.0643)

-0.0033
(0.0701)

-0.0014
(0.0787)

-0.0040
(0.0688)

-0.0052
(0.0728)

β12 0.0000
(0.1100)

0.0000
(0.1152)

-0.0001
(0.1099)

-0.0149
(0.1174)

0.0082
(0.1327)

0.0060
(0.1209)

-0.0106
(0.1258)

Table 10: Simulation results for the estimated coefficients for the observation Equation 47 with N = 25
and 500 iterations. For these results, we set the values of the parameters from the first stage Equation 49
to be equal to their true values. The values correspond to the mean bias of estimates, and the standard
deviation is in parenthesis.
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Kyriazidou h = 3
β11 -0.0060

(0.0632)
0.0011
(0.0685)

-0.0039
(0.0622)

-0.0019
(0.0675)

-0.0001
(0.0763)

-0.0033
(0.0665)

-0.0038
(0.0700)

β12 0.0000
(0.1081)

0.0019
(0.1128)

0.0000
(0.1078)

-0.0139
(0.1146)

0.0085
(0.1290)

0.0065
(0.1176)

-0.0097
(0.1224)

Kyriazidou h = 3, corrected
β11 -0.0065

(0.0634)
0.0001
(0.0686)

-0.0045
(0.0623)

-0.0024
(0.0677)

-0.0013
(0.0766)

-0.0038
(0.0667)

-0.0042
(0.0702)

β12 0.0000
(0.1083)

0.0013
(0.1130)

0.0000
(0.1080)

-0.0145
(0.1148)

0.0081
(0.1293)

0.0059
(0.1178)

-0.0101
(0.1226)

Kyriazidou h = 5
β11 -0.0042

(0.0615)
0.0020
(0.0672)

-0.0020
(0.0606)

0.0001
(0.0649)

0.0001
(0.0740)

-0.0011
(0.0645)

-0.0015
(0.0673)

β12 0.0029
(0.1062)

0.0040
(0.1103)

0.0021
(0.1058)

-0.0117
(0.1123)

0.0100
(0.1254)

0.0082
(0.1141)

-0.0080
(0.1198)

Kyriazidou h = 5, corrected
β11 -0.0050

(0.0617)
0.0014
(0.0674)

-0.0028
(0.0608)

0.0000
(0.0651)

0.0000
(0.0742)

-0.0018
(0.0647)

-0.0020
(0.0675)

β12 0.0020
(0.1065)

0.0032
(0.1106)

0.0012
(0.1060)

-0.0125
(0.1125)

0.0094
(0.1257)

0.0073
(0.1143)

-0.0086
(0.1201)

Kyriazidou h = 10
β11 0.0046

(0.0583)
0.0090
(0.0646)

0.0070
(0.0578)

0.0091
(0.0613)

0.0067
(0.0702)

0.0073
(0.0612)

0.0050
(0.0637)

β12 0.0147
(0.1023)

0.0128
(0.1074)

0.0123
(0.1029)

-0.0026
(0.1090)

0.0168
(0.1206)

0.0180
(0.1096)

-0.0016
(0.1160)

Kyriazidou h = 10, corrected
β11 0.0037

(0.0584)
0.0083
(0.0648)

0.0061
(0.0580)

0.0083
(0.0615)

0.0062
(0.0704)

0.0065
(0.0614)

0.0045
(0.0639)

β12 0.0136
(0.1025)

0.0120
(0.1076)

0.0112
(0.1031)

-0.0035
(0.1092)

0.0162
(0.1208)

0.0170
(0.1098)

-0.0022
(0.1162)

Table 11: Simulation results for the estimated coefficients for the observation Equation 47 with N = 25
and 500 iterations. For these results, we set the values of the parameters from the first stage Equation 49
to be equal to their true values. The values correspond to the mean bias of estimates, and the standard
deviation is in parenthesis.
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Figure 31: QQ plot of estimated β12 in Design 6

Figure 32: QQ plot of estimated β12 in Design 7
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